
Image Analysis Techniques for
Industrial Inspection Systems

Przemysław Pietrzkiewicz

Copyright © 2012-2019 Adaptive Vision sp. z o.o.

Contents

Contents i

Introduction 1

1 Image Thresholding 5
1.1 Introduction . 6
1.2 Global Thresholding . 6
1.3 Threshold Selection . 7
1.4 Dynamic Thresholding . 15

2 Blob Analysis 19
2.1 Introduction . 20
2.2 Region . 21
2.3 Elementary Operators . 24
2.4 Mathematical Morphology . 27
2.5 Topology . 33
2.6 Features . 36
2.7 Examples . 40

3 1D Edge Detection 43
3.1 Introduction . 44

i

Contents

3.2 Profile Extraction . 45
3.3 Step Edges . 48
3.4 Ridges . 52
3.5 Stripes . 56
3.6 Examples . 57

4 2D Edge Detection 61
4.1 Introduction . 62
4.2 Image Gradient . 62
4.3 Canny Edge Detector . 67

5 Contour Analysis 73
5.1 Introduction . 74
5.2 Path . 74
5.3 Segmentation . 75
5.4 Statistical Features . 79
5.5 Geometrical Features . 83

6 Shape Fitting 87
6.1 Introduction . 88
6.2 Lines . 89
6.3 Circles . 94
6.4 Fitting Approximate Primitives to Images 97
6.5 Examples . 98

7 Template Matching 101
7.1 Introduction . 102
7.2 Brightness-Based Matching . 103
7.3 Edge-Based Matching . 111
7.4 Examples . 114

Bibliography 115

ii

Introduction

No profit grows where is no
pleasure ta’en; in brief, sir, study
what you most affect.

William Shakespeare

1

Contents

The aim of this work is to discuss a selection of the most popular image
analysis techniques in the context of industrial inspection applications. We
will explain the mechanics of each method and demonstrate their applicability
(or lack of such applicability) in the industrial setting using real industrial
images.

Scope

When selecting the specific set of methods to be discussed in the work, we
have decided to focus on methods that meet the following criteria:

• Direct relation with image analysis – we will cover the methods that
either directly extract information from images, or are designed specifi-
cally for further processing of such information.

• General-purpose character – we will discuss the methods that may
be employed to address a range of needs, as opposed to methods for de-
coding information represented in any particular format, such as barcode
recognition.

Our discussion will commence with two chapters covering extraction and anal-
ysis of pixel-precise image objects (Image Thresholding, Blob Analysis).
Later we will cover sub-pixel precise measurements (1D Edge Detection) and
extraction and analysis of sub-pixel precise contours (2D Edge Detection,
Contour Analysis). We will conclude the survey with two techniques for
locating geometric primitives (Shape Fitting) and custom pre-defined image
templates (Template Matching).

Reference Implementation

All of the methods were evaluated using Adaptive Vision Studio 4 and
all of the results included in the work come from this software. The specific
operators implementing the methods discussed in each section are indicated in
Reference Implementation boxes, such as the following:

Adaptive Vision Studio 4 filter LenaImage produces the well known
image of Lena Soderberg.

2

http://docs.adaptive-vision.com/current/studio/filters/ImageBasics/LenaImage.html

Contents

Free editions of the software include full library of the operators and are
available at www.adaptive-vision.com.

Conventions

When naming variables, we use lowercase identifiers such as a, delta to denote
real and integer numbers, and uppercase identifiers such as R, Image to denote
instances of complex types such as euclidean points, segments, regions or images.

3

http://www.adaptive-vision.com

Chapter

1
Image Thresholding

Truly to enjoy warmth, some
small part of you must be cold,
for there is no quality in this
world that is not what it is
merely by contrast. Nothing
exists in itself.

Herman Melville

5

1. Image Thresholding

1.1 Introduction

Classification of image pixels into groups sharing some common character-
istics is often the very first step of automatic image interpretation. Typically
we wish to segment an image into blobs representing the individual objects it
contains, so that they can be subject to measurements or any other mean of
inspection.

Usually trivial for the human mind, unsupervised Image Segmentation
is far from straightforward in general case. The available methods vary in
complexity and principles, taking into account various image parameters such
as color, brightness, gradient, texture or motion.

In the industrial setting it is often the case that the image content can be
clearly divided into background (e.g. the surface of conveyor line or inspection
station) and foreground (e.g. the objects being inspected). Such simple, binary
pixel classification is called Image Thresholding.

1.2 Global Thresholding

Basic thresholding operator simply selects the pixels of intensity within a
predefined range. If we interpret the results as a binary image with black
pixels denoting the background and white pixels denoting the foreground, the
operation applied to an image I computes the result B as follows:

B[i, j] =

{
1 if minV alue ≤ I[i, j] ≤ maxV alue
0 otherwise

Figure 1.1 demonstrates example results of thresholding the same image
with different range of foreground intensities.

Global thresholding is global in that it evaluates each pixel of the image using
the same foreground intensity range. As such, it requires not only that the
background is consistently darker (or brighter) than foreground, but also that
the lightning is reasonably uniform throughout the entire image.

6

1.3. Threshold Selection

Figure 1.1: Results of global thresholding with different threshold values – pixels
identified as foreground marked in orange.

The importance of uniform (in space) and constant (in time, when a series
of images is analyzed) lightning for successful application of automatic visual
inspection is paramount. Whenever bad lightning conditions disrupt work of
a technique, we should try to amend the lightning first, and only if this is not
possible we should move to adjusting the algorithm.

That being said, numerous methods were developed to allow successful thresh-
olding despite the lightning imperfections.

1.3 Threshold Selection

If the lightning is reasonably uniform throughout the image, but changes over
time (which is usually the case whenever the system is not fully isolated from the
sunlight) the threshold values should be adjusted accordingly. As the system
should be essentially unsupervised in operation, we need to employ a technique
that will allow us to determine the feasible threshold automatically, given only
the image to be thresholded.

Applying such technique would also eliminate the bias introduced by manual
adjustment of the threshold parameters – usually there is a range of feasible
threshold values and the extracted objects appear smaller or bigger depending
on the selected value.

7

1. Image Thresholding

Automatic threshold selection has been subject to extensive research and a
rich set of different methods has been developed. A survey[1] by Sezgin and
Sankur mentions 31 different methods of automatic selection of global thresh-
olding values. We will demonstrate a selection of techniques particularly popular
in the industrial applications.

The distribution of pixel intensities is an important source of information
about the applicability of global thresholding and the possible threshold values.
Because of that we will present histogram of pixel intensities along each example
in this section.

We will demonstrate the strengths and weaknesses of individual methods
using a set of industrial images demonstrated in Figure 1.2. As most of these
images are used more than once, we have decided to display them collectively
for brevity, in later section presenting solely the thresholding results.

Mean Brightness

As long as both background and foreground are consistent in brightness and
occupy similar proportion of the image space, we may expect that the aver-
age image intensity will lie somewhere between the intensities of objects and
background and as such would be a feasible threshold value.

In Figure 1.3 we can see an image for which this method performs correctly.
Well separated background and foreground intensities appear as two significant
modes in the image histogram. The modes are similar in size, which is a conse-
quence of roughly even distribution of background and foreground in the image
space.

Unsurprisingly, the average pixel brightness (denoted with vertical line in the
histogram) fits between the two modes and allow for accurate thresholding.

Unfortunately the accuracy of this method quickly drops as the disproportion
between background and foreground increases. Figure 1.4 demonstrates an
example for which the method fails, even though the histogram modes are still

8

1.3. Threshold Selection

(a) (b)

(c) (d)

Figure 1.2: Four images used to benchmark threshold selection methods.

well-separated and the range of feasible threshold values is trivial to read from
the histogram.

This makes the method in its basic form not advisable for most of the in-
dustrial applications, although its shortcomings may be addressed using edge
detection, which we will inspect in detail in later chapter. If we compute the
average brightness using only the pixels in fixed neighborhood of edges separat-
ing objects from background, we may assume that roughly the same amount of
background and foreground pixels will be taken into account.

9

1. Image Thresholding

Figure 1.3: Example image successfully thresholded using mean brightness as
the threshold value.

Figure 1.4: Example image for which mean brightness is not a feasible threshold
value.

Histogram Shape Analysis

In the previous section we have seen two examples of images having bimodal
histograms with a clear valley between two modes corresponding to the range
of feasible threshold values. Some of the popular threshold selection methods
look for this valley algorithmically – either directly or indirectly, analyzing the
shape properties of image histogram.

In one of the first papers[2] written on the threshold selection problem Prewitt
and Mendelsohn proposed to smooth the image histogram iteratively until only
two local maxima are preserved, and then select the threshold value as a mean of

10

1.3. Threshold Selection

Figure 1.5: Threshold selection using Intermodes method.

Figure 1.6: Threshold selection using Intermodes method.

this two remaining maxima. Figure 1.5 demonstrates a successful application
of this method to an example for which the mean brightness method failed.

Intermodes method performs well as long as the image histogram is essen-
tially bimodal, but yields unstable results whenever this is not the case. Figure
1.6 demonstrates an example which at the first sight seems to have an obvious
threshold value, but in fact has unimodal histogram with hardly any peak cor-
responding to the foreground. Unsurprisingly, the method fails on such image.

Entropy
Entropy of a distribution (e.g. distribution of the pixel brightness, i.e. image

histogram) is a quantitative measure of its disorder – it is high when the frac-

11

1. Image Thresholding

tions of pixels taking the individual intensities are similar throughout the range
of possible pixel values1 and low when certain values are overrepresented in the
image.

The most commonly measure of entropy is the one proposed by Shannon, in
which the entropy of a distribution D is defined as:

Entropy(D) = −
∑

(v,f)∈D

f log2 f

where each element of the distribution (v, f) represents that a value v is
taken by the fraction f of the data, i.e.

∑
(v,f)∈D f = 1.0.

Numerous attempts were made to employ analysis of entropic properties of
the image intensity distribution to threshold selection, from early works of Pun
to more recent investigations on applications of fuzzy entropy measures. We
will demonstrate the method proposed[3] by Kapur, Sahoo and Wong which is
indicated[1] as well-performing by Sezgin and Sankur.

In this technique the image intensity distribution is split into foreground and
background distributions at the intensity level k for each possible value of k.
Then the entropy of both distributions is computed and the k which yields the
largest sum of two entropies is selected as the threshold value.

The rationale for such schema lies in the fact that after the thresholding both
foreground and background pixels will be set to a constant value2, thus the
entropy of both distributions will be reduced to 0. Therefore the threshold value
that maximizes the entropies of two classes can be thought to imply the biggest
reduction of disorder in image (at least in terms of intensity distribution).

Such approach to threshold selection can yield good results on images for
which other methods fail, as demonstrated in Figure 1.7, but it may also fail
spectacularly on apparently simple images with clear, bimodal histogram, as
demonstrated in Figure 1.8. For this reason we would discourage use of this
technique in the industrial setting.

1Such situation represents high disorder because the pixel values are uniformly scattered
over the entire domain of pixel intensities.

2E.g. 0 for background and 255 for foreground.

12

1.3. Threshold Selection

Figure 1.7: Threshold selection using Entropy method.

Figure 1.8: Threshold selection using Entropy method.

Clustering

Threshold selection problem may be also formulated in terms of clustering
– indeed, our aim is to divide the full intensity spectrum into two clusters,
foreground and background intensities, separated by the threshold value. In
this section we will demonstrate two techniques that follow this interpretation
of the problem.

K-Means

Well known general-purpose K-Means algorithm iteratively computes the
means of current set of K clusters, and reassigns the elements being clustered,
each one to the cluster represented by the nearest of means computed in this

13

1. Image Thresholding

iteration.

This idea was applied[4] to threshold selection problem by Ridler and Calvard.
The algorithm maintains two clusters containing complementary parts of the
intensity range. At each step mean brightness of the pixels in each cluster is
computed and pixels are reassigned to the cluster of nearest mean.

It is worth noting that even though the authors proposed an iterative scheme
of computation, it is perfectly feasible to perform a brute force search over all
possible threshold values and select the one that fits halfway between means of
the induced clusters; especially in the common case of uint8 industrial images
of only 255 possible intensity levels. If we precompute the image histogram and
maintain the running averages of the clusters, we may process each threshold
value in constant time.

Otsu Method

One of the first clustering approaches was proposed[5] by Otsu, who described
a method that selects the threshold value that maximizes the between-class
variance between foreground and background intensities:

|F | · |B| · (F −B)2

where |F | and |B| denote, accordingly, the number of foreground and back-
ground pixels while F and B denote their mean values.

Both methods of clustering-based threshold selection yield similar results for
the set of benchmark images used in this chapter. As the methods do not
explicitly look for a valley between histogram modes, they can give stable and
correct results for some images for which histogram shape analysis methods
fail. Unfortunately, similarly to the entropic method we have already seen,
the methods fail in some cases for which simple methods work correctly, as
demonstrated in Figure 1.9.

Summary
As we have demonstrated, automatic threshold selection is not an easy task

in general case. As long as the image has clear, bimodal histogram, we may
relay on the accuracy of simple histogram shape-analysis based methods, but
when this is not the case things get more complicated.

14

1.4. Dynamic Thresholding

Figure 1.9: Threshold selection using Otsu method.

If the system is supposed to operate at high levels of reliability, it would be
prudent to use global thresholding with automatic threshold selection only if
we can guarantee the conditions in which a method of our choice performs cor-
rectly. Often this will not be possible, in which case we should consider using
dynamic thresholding (discussed in the next section) or discarding the thresh-
olding methods at all in favor of Contour Analysis or Template Matching.

Adaptive Vision Studio 4 filter SelectThresholdValue implements
the following threshold selection methods: HistogramIntermodes, Cluster-
ingKittler, ClusteringKMeans, ClusteringOtsu, Entropy.

1.4 Dynamic Thresholding

When the lightning in the scene is uneven to the point where image foreground
intensity in dark parts of the image is at the same level as the background
intensity in bright sections - or, in other words, intensity ranges of background
and foreground are overlapping - it is clear that global thresholding cannot be
applied.

An example of such problem is illustrated in Figure 1.10. As we can see,
bad lightning setup makes left bars of the barcode appear brighter than the
background in the right part of the barcode. Key point in overcoming this issue
lies in an observation that the barcode, even under bad lightning, is still locally
darker than the background in its entirety.

15

http://docs.adaptive-vision.com/current/studio/filters/ImageThresholding/SelectThresholdValue.html

1. Image Thresholding

Figure 1.10: .

This is illustrated in Figure 1.11, where we plot the 1D profile of the barcode
extracted along the scan line marked in the image and the same profile smoothed
with running average operator of with 10.

0 20 40 60 80 100 120 140 160 180
50

100

150

200

250

Figure 1.11: Brightness profile of the barcode image in blue, smoothed profile
in red.

Therefore, if we define the threshold value in relation to mean local brightness
at each location, we can get accurate results despite bad lightning conditions.
Dynamic Thresholding classifies the pixels of image I in relation to image A
representing local brightness means:

B[i, j] =

{
1 if minV alue ≤ I[i, j]−A[i, j] ≤ maxV alue
0 otherwise

16

1.4. Dynamic Thresholding

The image of local averages may be obtained using smoothing operator. De-
pending on the specific application we may prefer to use different smoothing
methods. In practice mean blur with box kernel is frequently used due to its
efficiency and despite its anisotropy. Gaussian operator is isotropic, yet slower
alternative.

Figure 1.12 demonstrates failed global thresholding attempt (with lowest
threshold value that includes whole bar area in the result) and the results of
dynamic thresholding of the image using mean blur with box kernel.

Figure 1.12: Results of global thresholding and dynamic thresholding of the
barcode picture.

Adaptive Vision Studio 4 filters ThresholdImage_Dynamic and
ThresholdToRegion_Dynamic implement the dynamic thresholding
method using mean average with box kernel.

17

http://docs.adaptive-vision.com/current/studio/filters/ImageThresholding/ThresholdImage_Dynamic.html
http://docs.adaptive-vision.com/current/studio/filters/ImageThresholding/ThresholdToRegion_Dynamic.html

Chapter

2
Blob Analysis

Mr Herbert was cleaning a
cupboard when he found the blob
of glue. His girlfriend noticed
that it looked similar to Homer
Simpson, and he decided to try
to sell it on eBay.

http://web.orange.co.uk

19

2. Blob Analysis

2.1 Introduction

In the previous chapter we have been looking into methods that allow us to
extract pixel-precise regions corresponding to the objects present in the image.
The obtained regions can be and usually are subject to inspection – measure-
ments, classification, counting, etc. Such analysis of pixel-precise shapes ex-
tracted from image is called Blob Analysis, Region Analysis or Binary Shape
Analysis.

Blob Analysis is a fundamental technique of image inspection; its main
advantages include high flexibility and excellent performance. Its applicability
is however limited to tasks in which we are able to reliably extract the object
regions (see Template Matching for an alternative). Another drawback of
the technique is pixel-precision of the computation (see Contour Analysis for
a subpixel-precise alternative).

Figure 2.1: Example Blob Analysis applications – detection of excessive rubber
band segment and disconnected fuses.

A typical Blob Analysis-based solution consists of the following steps:

1. Extraction – firstly, the region corresponding to image objects is ex-
tracted from the image, usually by means of Image Thresholding.

2. Processing – secondly, the region is subject to various transformations
that aim at enhancing the region correspondence to the actual object or
highlighting the features that we want to inspect. In this phase the region
is often split into connected components so that each one can be analyzed
individually.

3. Feature Extraction – in the final part the numerical and geometrical
features describing the refined regions, such as its diameter, perimeter,

20

2.2. Region

compactness, etc. are computed. Such features may be the desired result
themselves, or be used as discriminants for region classification.

As Image Thresholding has already been discussed in the previous chap-
ter, this chapter will focus entirely on two latter steps. We will commence with
a demonstration of the data structure that we will use for representation of
pixel-precise shapes and proceed to discussion of morphological and topologi-
cal transformations that may be performed on such shapes. After that we will
review the numerical and geometrical features of binary shapes that are partic-
ularily useful for the needs of visual inspection and conclude the chapter with
a handful of example Blob Analysis applications.

2.2 Region

Region is the fundamental data type for representation of pixel-precise binary
shapes. Formally, it may be defined as follows:

Region is any subset of image pixel locations.

As follows from this definition, a region may represent any pixel-precise shape
present in an image, connected or not, including empty region and full region.
Image Thresholding operations discussed in the previous chapter return a single
region – possibly representing a number of image objects.

Data Representation

The actual representation of a region in computer memory does not affect the
theory of Blob Analysis but has important practical implications. Typically,
the decision on the data representation boils down to the trade-off between
memory efficiency of the data storage and computational efficiency of the oper-
ations that we intend to perform on data instances.

Binary Image

One trivial representation of a region would be a binary image, each of its
pixels having a value of 0 (not-in-region) or 1 (in-region). Such representation
is quite verbose, as each region (even empty region) consumes an amount of
memory corresponding to the size of the original image. On the other hand,

21

2. Blob Analysis

this representation allows O(1) lookup time for determining whether a pixel
belongs to a given region.

Run-Length List

We could reduce the memory consumption using a classic data compression
technique: Run-Length Encoding. In this technique consecutive, uniform sec-
tions (runs) of data are stored as tuples (value, length). In case of binary values,
we may use an alternative form in which the runs of ones are represented as
tuples (position, length) and the runs of zeros are represented implicitly as the
complement of ones. We may use the latter form to represent horizontal runs
of region pixel locations as tuples (x, y, length), where x and y denote the co-
ordinates of the first pixel of the run.

Such representation does not allow for O(1) random-pixel access anymore,
but as long as the list of pixel runs is sorted, we can achieve O(log(R)) pixel
lookup time, R denoting the number of pixel runs. In return this representation
allows to perform various operations (such us region intersection or moment
computation) in time dependent on the number of runs rather than number of
pixels; which yields significant speed-up in typical applications.

As to memory efficiency, the results of a simple benchmark are presented in
Table 2.1. We took into account three representations, each applied to store
four regions extracted from 250x200 images.

• Binary Image (uint8) – a variant of Binary Image representation in
which each pixel is stored as 0 or 1 value of 8-byte integer value. Although
suboptimal, 8-byte per pixel is prevalent pixel depth for such applications
because of the low-level details of memory access.

• Binary Image (bit) – a variant of Binary Image representation in which
each pixel is stored as 0 or 1 value of a single bit.

• Run-Length Encoding – we assumed that each element of the (x, y, value)
tuple is stored using 16-bit integer type, which accumulates to 6-bytes per
pixel run memory usage.

22

2.2. Region

Image (uint8) Image (bit) RLE
50000 6250 0

50000 6250 978

50000 6250 6276

50000 6250 75102

Table 2.1: Number of bytes consumed by different region representations.

Region Dimensions

In our reference implementation, Adaptive Vision Studio 4 , regions are
represented using the run-length encoding described above, with one slight ex-
tension: each region stores two additional integers representing its reference
dimensions: width and height.

23

2. Blob Analysis

These are usually the dimensions of image the region was extracted from
and serve two purposes. For one thing, they allow meaningful display of a
region in the context of image it refers to; for other thing – they conveniently
allow to define a complement of a region. Formally, the finite dimensions of
the region space allows to distinguish between three types of pixels: set, unset
and undefined (outside the region dimensions), i.e. corresponding to undefined
image pixels that we have no information about.

Figure 2.2: Region of dimensions: 7 (width), 5 (height)

2.3 Elementary Operators

In this section we will introduce six elementary operations that can be per-
formed on regions. Four of them refer to the set nature of regions, two further
are defined in relation to its spatial properties.

In the next section we will use these building blocks to define powerful trans-
formations from the field of Mathematical Morphology.

Set Operators
Applicability of basic set operators to region processing follows directly from

the definition of region.

Union

Union of two regions is a region containing the pixels belonging to either, or
both of the input regions, as demonstrated in Table 2.2.

Intersection

Similarly, intersection of two regions is a region containing the pixels belong-
ing to both of the input regions, as demonstrated in Table 2.3.

24

2.3. Elementary Operators

A B A ∪B

Table 2.2: Union of two regions

A B A ∩B

Table 2.3: Intersection of two regions

Difference

Last binary operation in this group is difference, yielding the pixels belong-
ing to first region, but not to the second region. Thus, this operation is not
commutative, contrary to intersection and union.

A B A \B

Table 2.4: Difference of two regions

Complement

The only unary set operator, complement, is also applicable to region; how-
ever industrial implementations differ in its interpretation. We will follow the
way of our reference implementation, where complement is easy to define as
each region stores the dimensions of its finite reference space.

25

2. Blob Analysis

A A{

Table 2.5: Complement of a region

Spatial Operators

Two further operators refer to spatial properties of region. Naturally, there
are far more spatial operators than can be defined for region; for now we intro-
duce only two that are necessary to define morphological operators discussed in
the next section.

Translation

Translation of a region shifts its pixel coordinates by integer vector.

A Translate(A, v)

Table 2.6: Translation of a region by vector -2,1.

Reflection

Reflection mirrors a region over a location (origin). This operation will be
particularly useful for processing morphological kernels, which we will discuss
in the next section.

26

2.4. Mathematical Morphology

A Reflect(A, org)

Table 2.7: Reflection of a region, its origin marked with a black square.

2.4 Mathematical Morphology

Mathematical Morphology, born in 1960s and rapidly developing ever since,
is both a theory and a technique for processing spatial structures. Soille de-
scribed[6] the field as being mathematical in that it is built upon set theory
and geometry, and being morphology1 in that it aims at analyzing the shape of
objects.

In most general case, Mathematical Morphology applies to any complete lat-
tice. We will concentrate on its application to region processing. In this context
Mathematical Morphology can be looked at as a set of techniques that alter a
region by probing it with another shape called kernel or structuring element.

Kernel

Kernel in Mathematical Morphology is a shape that is repeatedly aligned at
each position within the dimensions of the region being processed. At each such
alignment the operator verifies how the aligned kernel fits in the region (e.g. if
the kernel is contained in the region in its entirety) and depending on the results
includes the location in the results or not.

As kernel is pixel-precise binary shape itself, it can be represented as a re-
gion together with integer coordinates of its origin. Specifying the origin is
important, as it is the position that will be aligned against the region being
processed.

1From Greek morphe meaning form.

27

2. Blob Analysis

Table 2.8: Example kernels for morphological operations.

Dilation
First morphological operation that we are going to discuss is dilation. In this

operator the kernel aligned at each position within the region dimensions needs
to overlap with at least one pixel of the input region to include this position in
the result:

Dilate(R,K) = {[px, py]|R ∩ Translate(K, [px, py]) 6= ∅}

R K Dilate(R,K)

Table 2.9: Dilation of a region

If we decompose the kernel into its individual pixels we may observe that each
such pixel [kx, ky] ∈ K contributes a copy of the region translated by [−kx,−ky]
into the result. Therefore we may also define the dilation operator as follows:

Dilate(R,K) =
⋃

[kx,ky]∈K

Translate(R, [−kx,−ky])

Dilation effectively expands the region, the magnitude and direction of the
expansion depending on the kernel being used. The operator is commonly used
to join disconnected components of a region. Dilating a region by circular kernel
of radius r will expand the region uniformly in each direction up to distance of

28

2.4. Mathematical Morphology

(a) (b)

(c) (d)

Figure 2.3: Dilation, extraction of connected components and intersection ap-
plied to split a region representing metal parts of the fuses (a) into components
representing individual fuses (d).

r pixels, effectively joining region components separated by less than 2r pixels.
One possible application is demonstrated in Figure 2.3.

In this example we process a region representing metal parts of two fuses. As
one of the fuses is burned out, the region contains three connected components.
To split it into two connected components, each representing an individual
fuse, we may perform the dilation before extracting the region components and
intersect the resulting regions with the original one to preserve their original
shape.

Erosion
Erosion is a shrinking counterpart of dilation. This operator requires that

the aligned kernel is fully contained in the region being processed:

Erode(R,K) = {[px, py]|Translate(K, [px, py]) ⊆ R}

29

2. Blob Analysis

R K Erode(R,K)

Table 2.10: Erosion of a region

Similarly to dilation, we may also formulate erosion in terms of kernel decom-
position. In this case each pixel of the kernel [kx, ky] ∈ K also contributes the
shifted copy of a region, but a position must be contained in all such contribu-
tions to be included in the results:

Erode(R,K) =
⋂

[kx,ky]∈K

Translate(R, [−kx,−ky])

The operations of dilation and erosion are closely related, but it is important
to note that they are not inverse2 of each other, i.e., erosion of a region does
not necessarily cancel out previously applied dilation; counterexample being
presented in Table 2.9 and Table 2.10. Quite contrary, consecutive applica-
tion of dilation and erosion is extremely useful operation and will be discussed
soon.

Although dilation is not an inverse of erosion, another relation between the
operations holds – they are duals of each other, meaning that dilation of a region
is equivalent to erosion of its background (complement), and conversely.

Erode(R,K) = Dilate(R{,K){

Closing

Before we define the next operator, let us get back for a moment to the dilation
operator. As we remember, dilation expands the region in the way defined by
the structuring element. It is worth noting that during this expansion small

2Actually neither of these operation has an inverse, as such operation would have to
magically guess where the lone pixels lost in erosion or holes filled in dilation were located.

30

2.4. Mathematical Morphology

holes and region cavities may get completely filled in. This effect is worth
attention as filling gaps of a region3 is a common need in industrial inspection.

Unfortunately, dilation does not address this need precisely – the missing
parts gets filled in, but also the region boundaries are expanded. It would be
more convenient to have an operator that avoids the second effect while keeping
the first.

The closing operator addresses this need by dilating the region and eroding
it right after that:

Close(R,K) = Erode(Dilate(R,K), Reflect(K))

Initial dilation fills in the region gaps and the succeeding erosion brings the
expanded region back to its original dimensions (but does not restore the gaps
that were completely filled in).

It is worth noting that we use the reflected kernel for the second operation – if
we recall that dilation may be formulated as a union of translations correspond-
ing to individual pixels of the kernel (

⋃
[kx,ky]∈K Translate(R, [−kx,−ky])), it

is clear that we need to use the opposite translations to keep the region in its
position.

R K Close(R,K)

Table 2.11: Closing of a region

Closing is commonly applied whenever the extracted region contains gaps or
cavities that should be filled in, an example of such application is demonstrated
in Figure 2.4.

3Which could be introduced for instance by local glare of the lightning affecting the results
of thresholding.

31

2. Blob Analysis

Figure 2.4: Closing operator used to fill gaps in a region.

Opening
Another useful morphological operator is obtained by interchanging the order

of operators that closing is composed of. The opening operator firstly erode a
region and then dilates the result:

Open(R,K) = Dilate(Erode(R,K), Reflect(K))

The effect of such composition is dual to the closing operator that we re-
cently discussed. The initial erosion shrinks the region removing its isolated
pixels and small branches, while the successive dilation brings it back to orig-
inal dimensions, but cannot restore the parts that vanished completely during
erosion.

R K Open(R,K)

Table 2.12: Opening of a region

The opening operator may be applied to remove salt noise in the region or
to eliminate its thin parts. Opening a region using a circular kernel of radius
r will remove all segments of the region that have less than 2r pixels in width
(and keep the other parts intact). An example application is demonstrated in
Figure 2.5.

32

2.5. Topology

Figure 2.5: Opening operator used to determine excessively wide section of the
rubber band.

Basic morphological operators described in this section are available as
Adaptive Vision Studio 4 filters:

• DilateRegion, DilateRegion_AnyKernel

• ErodeRegion, ErodeRegion_AnyKernel

• CloseRegion, CloseRegion_AnyKernel

• OpenRegion, OpenRegion_AnyKernel

The filters with _AnyKernel suffix allow to perform the operation using
arbitrary kernel, while their counterparts allow to choose from a set of
predefined, hard-coded kernels.

2.5 Topology

We have already seen operations defined in the context of set nature of the
region as well as operations concerned with its spatial properties. The last set
of transformations that we will discuss is built upon topological concepts such
as neighborhood, connectivity or boundaries.

Connectivity
Pixel connectivity defines the conditions in which we say that two pixels are

connected and as such is a key concept in the context of topological transforma-
tions. There is a well known paradox inherently associated with the definition
of binary shapes connectivity on square grids4.

4On triangular grids as well, but not on hexagonal ones.

33

http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/DilateRegion.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/DilateRegion_AnyKernel.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/ErodeRegion.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/ErodeRegion_AnyKernel.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/CloseRegion.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/CloseRegion_AnyKernel.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/OpenRegion.html
http://docs.adaptive-vision.com/current/studio/filters/RegionMorphology/OpenRegion_AnyKernel.html

2. Blob Analysis

To demonstrate the paradox let us consider a closed not self-intersecting
curve. Jordan Curve Theorem (and our common sense) requires that such curve
should divide the space in which it lies into exactly two parts – interior and ex-
terior. The paradox of pixel connectivity lies in the fact that this requirement
is not met under either of two reasonable definitions of pixel connectivity.

One possible definition of connectivity is 4-connectivity in which a pixel is
consider connected to the pixels it shares an edge with, as demonstrated in
Table 2.13. Under this definition the curve on the right splits the space into
three, rather than two connected components.

Table 2.13: 4-connectivity kernel and a curve demonstrating a violation of the
Jordan curve property.

Another option to consider is 8-connectivity in which a pixel is considered
connected to the pixels it shares a corner with, as demonstrated in Table 2.14.
Unfortunately in this case it is possible to construct a closed curve that does
not split the space at all, i.e. curve the interior of which remains connected to
the exterior, as demonstrated on the right.

Table 2.14: 8-connectivity kernel and a curve demonstrating a violation of the
Jordan curve property.

Rosenfeld proposed[7] to address this problem by using different connectivities
for foreground and background, which yields two feasible configurations:

34

2.5. Topology

• 4-connectivity for foreground, 8-connectivity for background

• 8-connectivity for foreground, 4-connectivity for background

From now on we will use the terms 4-connectivity and 8-connectivity in the
context of foreground connectivity, quietly assuming that the other type of
connectivity is used for background.

Connected Components
The necessity of splitting a region into its connected components (also referred

to as blobs) occurs naturally whenever the image contains a number of objects
and single thresholding is used to extract one region collectively representing all
of them. We have already seen an example of such proceeding in Figure 2.3.

Let us begin with a remark on more general problem of computing the con-
nected components of any graph. In such case there are two ways one can
follow: we can either traverse the components of the graph one component at a
time (using either breadth-first or depth-first search) or go through the edges of
the graph maintaining and updating a Union-Find structure representing our
knowledge of connected components in graph (i.e. determining all connected
components at the same time).

As we represent regions as lists of pixel runs, the problem boils down to
identification of the connected components of a set of pixel runs. Both of the
approaches described above can be adapted to do so. Careful implementation
of the DFS/BFS based technique performs in O(R) time complexity, while the
Union-Find based solution works in almost indistinguishable in practice com-
plexity of O(R log∗ R).

In either case to achieve target complexity it is crucial to carefully go through
the region point runs determining the neighbors of each run (either building
graph to which we will apply DFS/BFS or updating the Union-Find structure).
Splitting the list of point runs into separate lists for each row within the region
dimensions allows to do that in O(R) time.

Region Holes
The intuitive concept of a region hole may be formalized as follows:

35

2. Blob Analysis

Region hole is a connected component of region complement that is not ad-
jacent to the boundaries of the region dimensions.

An algorithm for extraction of the region holes may be derived directly from
this definition. One detail we should remember about is to use the background
connectivity when computing the connected components of the region comple-
ment, as discussed before.

Adaptive Vision Studio 4 filter SplitRegionIntoBlobs extracts an
array of region connected components while RegionHoles returns an ar-
ray of region holes computed as described above. Other method of
region splitting is available as filters SplitRegionIntoComponents and
SplitRegionIntoExactlyNComponents.

2.6 Features

Once we have acquired a region that accurately represents the object that we
intend to analyze, we may proceed to extraction of the region features. Features
of two-dimensional shapes (discreet regions as well as continuous polygons) may
be organized into two groups: statistical and geometrical.

Statistical features of a shape are built upon statistical concepts such as
mean or variance and may be computed directly from the coordinates of re-
gion pixels or polygon points, disregarding any spatial relations between them.
Statistical shape features include, among others, its area, mass center and ori-
entation (i.e. direction of the principal axis of inertia).

Geometrical features are defined in the context of spatial relations between
pixels or points contained in the shape. Some of the features, such as circularity
factor, are numeric properties, others, such as smallest bounding circle, take
form of geometric primitives.

Almost all of the shape features of both kind that we are going to cover
are equally applicable to pixel-precise regions and subpixel-precise polygons,
which we will discuss in detail in the Contour Analysis chapter. To avoid
duplication, in this section we will focus only on few region-specific features
and region-specific details of shape feature extraction.

36

http://docs.adaptive-vision.com/current/studio/filters/RegionGlobalTransforms/SplitRegionIntoBlobs.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionHoles.html
http://docs.adaptive-vision.com/current/studio/filters/RegionGlobalTransforms/SplitRegionIntoComponents.html
http://docs.adaptive-vision.com/current/studio/filters/RegionGlobalTransforms/SplitRegionIntoExactlyNComponents.html

2.6. Features

Statistical Features
Statistical features of two-dimensional shapes may be conveniently general-

ized as so called moments. Each moment is a numeric shape feature that sums
a simple function of pixel (or point) coordinates over every pixel (or point)
contained in the shape.

Formally, we distinguish two types of moments, raw and central, the lat-
ter of which considers the coordinate arguments of the function in relation to
the average (denoted x, y) of the appropriate pixel coordinate, thus achieving
translation-invariance. For a given region R, its raw and central moments, are
defined, respectively, as:

mp,q =
∑

(x,y)∈R

xpyq

cp,q =
∑

(x,y)∈R

(x− x)p(y − y)q

where each (p, q) for natural p ≥ 0, q ≥ 0 defines different moment. For
instance, m0,0 equals

∑
(x,y)∈R 1 and therefore computes the area of the region.

m1,0 computes the sum of x-coordinates of region pixels and so on.

Both raw and central moments may be normalized, i.e. divided by the area
of R, to achieve scale-invariance:

m′
p,q =

1

a
mp,q

c′p,q =
1

a
cp,q

where a denotes the area (number of pixels) of R. For instance, m′
1,0 computes

the average of pixel x-coordinates, i.e. x which together with m′
0,1 form the

mass center of R.

As previously indicated, we will discuss applications of these statistics in due
course. The region-specific aspect of moment extraction that should be stressed
here is that the region moments can be computed directly from their definition,
as the number of region pixels is finite; as opposed to infinite number of points
contained in continuous polygon.

37

2. Blob Analysis

Moreover, low-order moments may be calculated very efficiently due to the
RLE region representation that allow us to process a whole run of pixels in
constant time, achieving complexity O(r), where r denotes the number of region
pixel runs.

The following Adaptive Vision Studio 4 filters extract the statistical
features of a region: RegionArea, RegionElongation, RegionMassCenter,
RegionMoment, RegionOrientation, RegionEllipticAxes.

Geometrical Features
Contours

The contour of a region is a sequence of points defining its boundary (or
an array of such sequences in case of disconnected region), as demonstrated in
Figure 2.6.

Figure 2.6: Part of the contour of an example region.

Such points may be computed very efficiently in RLE region representation.
Let us observe that a contour of a region is defined by the sequence of its one
pixel long, directed, vertical segments – once we have the vertical segments,
adding horizontal sections between them is straightforward.

Moreover, all such vertical segments are easy to obtain from the RLE repre-
sentation – these are in fact two sides of every point run in the region. Extraction

38

http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionArea.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionElongation.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionMassCenter.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionMoment.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionOrientation.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionEllipticAxes.html

2.6. Features

of the contour therefore boils down to assigning successor to each vertical seg-
ment, i.e. answering a question for each such segment: which vertical segment
will be next on the contour? This can be done one row of runs at a time with
a careful linear scan of the point runs in the neighboring rows.

Calculating Region Features from Path Features

Contour extraction is a particularly useful feature, because it essentially con-
verts pixel-precise region to subpixel-precise polygons; thus allowing convenient
implementation of a number of region features that are more natural to define
for polygons.

Figure 2.7: Bounding circle of a region computed indirectly as a bounding circle
of its contour path.

Other Features

Other geometric features are not inherently related to pixel-precise regions,
and either may be computed using contour extraction together with correspond-
ing operator for sub-pixel precise shapes (e.g. bounding rectangle) or are built
on top of such operator (e.g. rectangularity factor). We will discuss these fea-
tures in the Contour Analysis chapter.

39

2. Blob Analysis

Feature Description
Bounding circle The smallest circle containing the entire region.
Bounding rectangle The smallest rectangle (of any orientation) contain-

ing the entire region.
Circularity Measure of similarity to a circle.
Diameter The longest segment between any two pixels of the

region.
Perimeter length Length of the region contours.
Rectangularity Measure of similarity to rectangle.

Table 2.15: Other geometrical properties of a region.

The following Adaptive Vision Studio 4 filters extract the geometrical
features of a region: RegionBoundingBox, RegionBoundingCircle,
RegionBoundingRectangle, RegionCircularity, RegionContours,
RegionConvexHull, RegionConvexity, RegionDiameter,
RegionPerimeterLength and RegionProjection and
RegionRectangularity.

2.7 Examples

In this section we will present a couple of industrial problems solved using
techniques introduced in this chapter.

Capsule Extraction
Region-processing techniques are commonly applied to refine inaccurate re-

sults of image thresholding. Figure 2.8 demonstrates a process of acquiring
correct representation of semi-transparent dishwasher powder capsule.

Transparency of the capsule material makes the object appear at similar
brightness levels as the background, thus precluding application of global thresh-
olding. Dynamic thresholding is applied instead to extract the boundaries of
the capsule, along with unwanted horizontal edges of the conveyor line.

As long as we may rely on the capsule to have a closed, dark contour (which
we assume we can), we can simply fill the region holes to acquire filled hull of

40

http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionBoundingBox.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionBoundingCircle.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionBoundingRectangle.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionCircularity.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionContours.html
http://docs.adaptive-vision.com/current/studio/filters/RegionGlobalTransforms/RegionConvexHull.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionConvexity.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionDiameter.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionPerimeterLength.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionProjection.html
http://docs.adaptive-vision.com/current/studio/filters/RegionFeatures/RegionRectangularity.html

2.7. Examples

the capsule and then perform morphological opening to remove unwanted thin
traces of conveyor line. This process is illustrated in Figure 2.8.

(a) (b)

(c) (d)

Figure 2.8: Input image (a), results of dynamic thresholding (b), filled holes of
the extracted region (c), morphological opening applied to filled region (d).

Counting
In this example our aim is to count the teeth of a saw blade. Contrary to

the previous example, now the region representing the object being inspected
is flawlessly extracted using simple thresholding while the interesting part lies
in the counting itself, i.e. in analysis of the extracted region.

Figure 2.9 demonstrates a morphology-based approach. Opening of the ex-
tracted region with big circular kernel removes the teeth, so that we may extract
the saw teeth using region difference and connected components operators.

In industrial setting it would be prudent to perform slight dilation on the
opened region before subtraction to make sure that none of the neighboring
teeth pair will remain connected after that.

41

2. Blob Analysis

(a) (b)

(c) (d)

Figure 2.9: Input image (a), results of global thresholding (b), opening of the
extracted region (c), connected components of difference between b. and c. (d).

42

Chapter

3
1D Edge Detection

The edge... There is no honest
way to explain it because the
only people who really know
where it is are the ones who have
gone over.

Hunter S. Thompson

43

3. 1D Edge Detection

3.1 Introduction

Image edges are locations of sharp change of brightness, i.e. locations of high
local contrast. As a consequence of being a contrast-based feature, the presence
and position of an edge is not altered by global illumination changes in the
image; which contributes to the robustness of Edge Detection-based solutions.

Edge detection techniques come in two variants depicted in Figure 3.1.
1D Edge Detection methods scan the image along a path and locate the
points of intersection between image edges and the scan line. 2D Edge De-
tection methods locate the entire edge. In this chapter we will inspect the first
technique, featuring remarkable performance and sub-pixel precision.

Figure 3.1: 1D Edge Detection, 2D Edge Detection

We will start with a short description of the methodology of extracting a 1D
image brightness profile along a given path and then proceed to detection of
the features present in the profile.

Depending on the nature of the brightness change that constitutes an edge,
we distinguish two kinds of edges: step edges, occurring between two areas of
different intensity, and ridge edges (or simply ridges), occurring where image
intensity changes briefly and then returns to initial value.

A wide class of visual inspection tasks is focused on the areas bounded by two
step edges of opposite polarity, rather than on the edges considered separately.
Because of that it is useful to consider such areas as a third, additional type of
feature discernible in one-dimensional profile; here called a stripe.

44

3.2. Profile Extraction

Overall, the chapter will cover detection of three kinds of features discernible
in 1D profiles, all demonstrated in Table 3.1. In each example the feature (step
edge, ridge or stripe) is vertical and the image is scanned horizontally to find
the points of intersection between the feature and the scan line.

Step Edge Ridge Stripe

Table 3.1: Different kinds of image features extracted from 1D profile.

3.2 Profile Extraction

Before we apply any of the 1D Edge Detection methods, firstly we need
to acquire a 1D profile that is to be inspected. Computing a discrete profile of
image brightness along a given path is a relatively straightforward task.

The first step is to sample the scan path, selecting a set of equidistant (typ-
ically with distance of one pixel [8, p. 150]) points of interest along the path.
Each of these points will correspond to one element of the constructed profile.
The second step is to compute the brightness values related to each of the points.

Multiple Sampling
We used the expression related to rather than at on purpose – although we

could simply take the image brightness values at each point of interest, it is
more prudent to use an average of a series of sampling points perpendicular to
the scan line, as demonstrated in Figure 3.2; thus achieving a simple means
of noise suppression.

But what kind of average should we use to compute the result for a single
point of interest? As long as the whole range of sampling points fits within the

45

3. 1D Edge Detection

Figure 3.2: Multiple Sampling for 1D Edge Detection.

object being inspected and its features are perpendicular to the scan path, the
brightness information collected at each of the sampling points is equally good
or bad as the information collected at the other ones. Because of that we may
safely use the simplest arithmetic mean.

We will refer to the number of points used to compute a single profile value as
scan width. The wider the scan, the stronger noise attenuation we get. However,
if the 2D feature we are to inspect is not perfectly perpendicular to the scan
line, the wide scan area will cause the edge in the resulting 1D profile to be
stretched and thus harder to identify precisely. Increasing the scan width will
also increase the computation time of the profile extraction, which depends
linearly on the number of sampling points.

Figure 3.3 demonstrates an example brightness profile extracted from the
image on the right, scanned horizontally along the red scan line.

Figure 3.3: 1D brightness profile extracted from the image.

46

3.2. Profile Extraction

Refinement
Even though a reasonably wide scan area suppresses the noise significantly

at the extraction level, we need to keep in mind that only random noise can
be suppressed in this way. Real pictures contain small features1 of image tex-
ture irrelevant to the inspection task that need to be attenuated before further
processing of the profile.

Selecting the smoothing filter to refine the extracted profile is not an obvious
choice. On the one hand we want to suppress the noise present in the profile, so
that irrelevant intensity changes are not identified as edge points, on the other
hand we want to achieve high precision of the edge localization.

These two criteria cannot be considered independently – smoothing of the pro-
file suppresses the noise, but also lowers the precision. Canny determined[9] that
the optimal trade-off between noise reduction and lose of precision is achieved
with the Gaussian smoothing filter defined as follows:

gσ(x) =
1√
2πσ2

e−
x2

2σ2

where the standard deviation σ is a parameter of the filter.

Discreet Gaussian Filter

The Gaussian function is defined in continuous, infinite domain – to obtain
a discreet approximation of the filter, we may sample gσ(x) at integer coordi-
nates[10]. Moreover, as the value of the Gaussian function quickly decreases
with the increase of |x|, we may limit the discreet filter to a finite neighborhood
of x = 0 without significant effect on the results of the smoothing.

The well known fact called a three-sigma rule states that more that 97% of
the Gaussian function integral is concentrated within 3σ distance from x = 0. It
is therefore reasonable to sample the Gaussian function at 2r+1 points, where
r is a small multiple of σ, e.g. 3dσe; thus obtaining a mask in the following
form:

1

s

[
g(r) g(r − 1) ... g(0) ... g(r − 1) g(r)

]
1Possibly perpendicular to the scan line and thus not affected by averaging the sampling

points.

47

3. 1D Edge Detection

where s equals the sum of the obtained gaussian coefficients, i.e. it ensures
the mean-preservation property of the filter.

Standard Deviation

Accurate adjustment of σ will contribute to the robustness of the computa-
tion. We should pick a value that is high enough to eliminate noise that could
introduce irrelevant extrema to the profile derivative, but low enough to pre-
serve the actual edges we are to detect. This parameter should be adjusted
through interactive experimentation on representative sample data, looking for
optimal trade-off between fidelity and noise attenuation.

Figure 3.4 demonstrates effects of smoothing the example brightness pro-
file with different σ values. Blue profile (σ = 0.0) exhibits fine noise while
brown profile (σ = 6.0) attenuates the valleys of significant edges, which makes
both suboptimal. Red profile (σ = 3.0) seems to exhibit appropriate degree of
smoothing.

0 50 100 150 200 250

50

100

150

Figure 3.4: Original brightness profile smoothed with different standard devia-
tions of Gaussian operator.

3.3 Step Edges

Once the brightness profile is extracted and smoothed, we can proceed to
detection of its features. First type that we will inspect is step edge. Step
edges occur between two areas of different intensity and are represented as an
abrupt intensity change in the 1D profile.

48

3.3. Step Edges

Edge Operator
Finding the step edges in a profile requires an edge operator – an operator

that produces high output for locations representing sharp change of brightness
and low output for the signal plateaus. One such operator is the derivative
of a function – an elementary concept of calculus. This is also the operator
suggested by Canny in already mentioned work [9]. But how do we actually
compute the derivative?

In case of a continuous signal its derivative is well defined. As both image
and (consequently) its brightness profile are discreet, we are left with partial
differences – discreet approximations of the signal first derivative.

The simplest way to compute the partial difference of a discreet signal S is
to subtract each value from its successor, i.e.:

D[i] = S[i+ 1]− S[i]

This operator, called Forward Difference, has a slight drawback – the result-
ing approximation D[i] actually corresponds to the domain value in between
i + 1 and i (i.e to i + 1

2). To achieve stable approximation of the first deriva-
tive we can compute the value D′[i] as a mean of D[i] and D[i − 1] (Central
Difference):

D′[i] =
1

2
(D[i] +D[i− 1])

=
1

2
(S[i+ 1]− S[i] + S[i]− S[i− 1])

=
1

2
(S[i+ 1]− S[i− 1])

Both equations are feasible for our application, however we need to remember
about the 1

2px shift introduced by Forward Difference operator and translate the
edge points accordingly on the very end. Figure 3.5 demonstrates an example
finite difference profile.

Edge Points
Once we have computed the derivative we can identify the edge points of the

original profile. There are two criteria that a profile value has to meet to be
considered an edge point:

49

3. 1D Edge Detection

0 50 100 150 200 250

0

50

100

150

Figure 3.5: An example profile and its forward difference.

1. Significant magnitude, i.e. magnitude larger than some predefined thresh-
old.

2. Locally maximal magnitude.

Both conditions are necessary – first ensures that only significant brightness
changes are identified as edge points, second (called Non-Maximum Suppres-
sion) ensures that a significant but stretched edge yields only one edge point.

The value of the minimum magnitude threshold in each case should be ad-
justed after inspection of derivative profile of sample data. Example depicted
in Figure 3.5 exhibits four significant peaks of the derivative profile varying
in magnitude from 11 to 13, while the magnitude of its other extrema is lower
than 3. In such case a value in the middle of range (4, 10) would be a prudent
choice of minimum magnitude threshold.

Profile locations meeting the magnitude criteria directly translate to edge
points in the original image. An example set of extracted edge points is demon-
strated in Figure 3.6.

Sub-pixel precision

Even though both the image being inspected and the extracted brightness
profile are discreet (with pixel-precision), we can compute the local extrema of
the derivative profile with sub-pixel precision thus achieving sub-pixel precision
of the entire method.

50

3.3. Step Edges

Figure 3.6: Result of 1D Edge Detection – a list of edge points along the
scan path.

Given a local extremum of a profile P at location i we can fit a parabola
through three consecutive profile values: P [i − 1], P [i], P [i + 1] and use the
x-coordinate of its peak as the location of the extremum.

Edge polarity filtering

It is often useful to filter the extracted edge points depending on the transition
they represent – that is, depending on whether the intensity changes from bright
to dark, or from bright to dark.

Figure 3.7: inTransition = BrightToDark, inTransition = DarkToBright

Post-processing

Once we have extracted the list of relevant edge points in the image we
are nearly done. Depending on the use scenario, it may be useful to perform
additional filtering of the extracted points on the very end of computation.
Three methods of post-processing are particularly useful.

51

3. 1D Edge Detection

All Edges

One trivial post-processing method is to simply return all of the extracted
step edges, that is – not to perform any post-processing at all. That would be
the default method to follow whenever we want to detect the number of edges
present in the image.

N Edges

Another option would be to select a fixed number of strongest edge points.
If we know the number of edges in advance, this method allows us to disregard
the adjustment of minimum magnitude threshold – we can simply set it to zero
and expect that the actual edges will still be correctly located.

That being said, it is often useful to adjust minimum magnitude threshold
anyway, so that in case of an error such as the object not being present in the
image, the computation will explicitly fail instead of returning irrelevant weak
edges.

Step edge detection algorithms are implemented in three Adaptive Vision
Studio 4 filters. All of them share common extraction logic, differing only
in post-processing method applied to select the final outcome.

• ScanMultipleEdges – returns all of the extracted edges.
• ScanExactlyNEdges – selects the most prominent set of edges of given

cardinality.
• ScanSingleEdge – wrapper over previous filter which selects the single

most prominent edge.

3.4 Ridges

Ridges are brief bright or dark impulses on a contrasting background. Dif-
fering from step edges in their definition, they also require slightly different
method of extraction. We will start the description from the point in which we
have just extracted and refined the 1D profile of image brightness, as illustrated
in Figure 3.8.

52

http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanMultipleEdges.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanExactlyNEdges.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanSingleEdge.html

3.4. Ridges

Figure 3.8: 1D brightness profile of an image with strong ridge in its center.

Ridge Operator
Ridges can be thought of as pairs of step edges of opposite polarity lying

extremely close to each other. We could use this observation to propose a
simple ridge detector operator adding together results of Forward Difference
and Backward Difference operators:

R[i] = (S[i]− S[i− 1]) + (S[i]− S[i+ 1])

= 2S[i]− S[i− 1]− S[i+ 1]

Such operator would be a discreet equivalent of the ridge operator proposed
by Canny[9], it has however two important drawbacks, pointed out by Subirana-
Vilanova and Sung[11]:

• The operator has non-zero response for step edges, which can easily lead
to false-positive errors.

• The quality of the detection strongly depends on the ridges having exactly
1 pixel in width, while in reality ridges usually appear as at least slightly
wider.

Both problems are illustrated by Figure 3.9 – we can notice a high impulse
response for step edges on the boundary of the object. Moreover, as the ridge in
the original image has three pixels in width, it appears in the resulting profile
as a pair of consecutive step edges.

The authors of [11] suggest to solve the problem of high response to step edges
by applying each half of the ridge operator separately and using the minimum
of two responses.

53

3. 1D Edge Detection

0 50 100 150 200 250 300 350 400 450 500 550

−40

−20

0

20

40

Figure 3.9: Naive ridge detection operator applied to the example profile.

R[i] = min(S[i]− S[i− 1], S[i]− S[i+ 1])

Such form of the operator is already feasible for narrow (one pixel wide)
ridges. To successfully detect wider ridges we could define a general operator
parametrized by the width of the ridge and the width of the reference margin
as follows:

R[i] = min(

S[i..(i+Width)]− S[(i− 1−Margin)..(i− 1)],

S[i..(i+Width)]− S[(i+ 1)..(i+ 1 +Margin)])

)

where S[a..b] denotes the average of S values between a-th and b-th element,
both inclusive.

It should be noted that contrary to the edge detection operator which could
be applied regardless of the polarity of edges being extracted, our ridge detection
operator (because of the minimum function) works specifically for bright ridges.
To extract dark ridges, analogous equation with maximum operator should be
used.

Figure 3.10 demonstrates the outcome of using such operator on the exam-
ple data from Figure 3.8. The maximum operator suppresses the magnitude

54

3.4. Ridges

of negative values (indicating possible ridge candidates) but amplifies the mag-
nitude of positive values. For clarity the drawing was cropped to negative-y
part.

0 50 100 150 200 250 300 350 400 450 500 550

−80

−60

−40

−20

0

Figure 3.10: Amended ridge detection operator applied to the example profile.

Example results of ridge detection performed using such operator are demon-
strated in Figure 3.11.

Figure 3.11: Results of ridge detection.

Post-processing
All methods of post-processing of the extracted step edge points described in

Step Edges section are applicable to ridges.

Ridge detection algorithms are implemented in three Adaptive Vision
Studio 4 filters. All of them share common extraction logic, differing only
in post-processing method applied to select the final outcome.

55

3. 1D Edge Detection

• ScanMultipleRidges – returns all of the extracted ridges.
• ScanExactlyNRidges – selects the most prominent set of ridges of

given cardinality.
• ScanSingleRidge – wrapper over previous filter which selects the sin-

gle most prominent ridge.

3.5 Stripes

Stripes are flat sections of brightness profile bounded by two step edges of
opposite polarity. Such definition indicates that the problem of stripe detection
heavily depends on the already discussed detection of step edges.

The concept of stripe is important mostly as a clear and succinct means of
formulation for a range of visual inspection tasks, whereas it does not bring any
novelties to the signal-processing aspect of the computation. Indeed, algorithms
for stripe extraction firstly find the step edges in the profile (using previously
described methods) and then process the results combining the extracted edges
into stripes.

Next section summarizes two basic methods of combining the extracted step
edges into stripes.

Edge Processing
All Stripes

As long as our goal is to maximize the number of constructed stripes, the
problem can be solved quite efficiently. It can be easily proven that a simple
O(n) algorithm that greedily connects each closing edge with the first open-
ing edge between already constructed stripes and the closing edge itself yields
optimal results.

N Stripes

The task is slightly more complicated if we know the desired number of stripes
in advance and aim at maximizing the sum of strengths of step edges constitut-
ing the selected stripes. To solve such optimization problem in O(n2) time we
can use a dynamic programming solution.

56

http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanMultipleRidges.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanExactlyNRidges.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanSingleRidge.html

3.6. Examples

Let us define a partial solution to the problem as follows:

Best[Prefix][Count] – sublist of the first Prefix step edges of alternating
edge-polarities having Count elements that yields the biggest sum of edge
strengths.

Having computed the results for Prefix = p we can compute the results for
Prefix = p + 1 in linear time – for each Count = c we need to consider only
two cases, either using the p + 1-th step edge to extend the optimal result of
Best[p][count-1] or not, in which case the result for the subproblem will be
equal to Best[p][count].

Stripe detection algorithms are implemented in three Adaptive Vision
Studio 4 filters. All of them share common extraction logic, differing only
in post-processing method applied to select the final outcome.

• ScanMultipleStripes – maximizes the number of returned stripes.
• ScanExactlyNStripes – constructs the most prominent set of stripes

of given cardinality.
• ScanSingleStripe – wrapper over previous filter which selects the

single most prominent stripe.

3.6 Examples

In this section we will demonstrate a few industrial applications of 1D Edge
Detection methods.

Positioning
1D Edge Detection methods are commonly employed to determine loca-

tions of objects. Let us consider an image of a capsule on a production line
demonstrated in Figure 3.12. We assume that the capsule is aligned with the
axis of the image and we want to determine the range of x-coordinates occupied
by the object.

As long as the background is plain and contrasting with object border, such
problem can be solved easily regardless of the inner content of the object. Fig-
ure 3.12 demonstrates the edge points detected along the horizontal scan line

57

http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanMultipleStripes.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanExactlyNStripes.html
http://docs.adaptive-vision.com/current/studio/filters/1DEdgeDetection/ScanSingleStripe.html

3. 1D Edge Detection

Figure 3.12: 1D Edge Detection applied to determine capsule position along the
x axis.

and visualisation of the resulting capsule position. The algorithm detects re-
dundant, inner edges, but this does not pose a difficulty, as we only need the
first and the last edge point of the returned list.

Code Reading

One of the classic applications of stripe detection is reading of 1D data codes.
Depending on the barcode format, we may2 or may not3 know the number of
bars the code is composed of – in the first case we may improve the robustness
of the method using the post-processing routine for extracting the fixed number
of strongest stripes which we have discussed before. In either case we expect
the method to measure the width of the bars present in the image.

Figure 3.13: 1D Edge Detection applied to read the widths of 1D code bars.

2E.g. in case of codes from EAN/UPC family commonly used in trade.
3E.g. in case of Pharmacode or Code128 standard.

58

3.6. Examples

It is interesting to note that the intercept theorem guarantees that we may
scan the barcode at any orientation of the scan line, as long as its deviation from
the barcode axis does not disrupt the stripe detection routine – the proportions
of widths of the intersected bars are preserved under any orientation of the scan
line.

Once the widths of the bars are obtained they can be passed to a decoder for
the specific barcode format to obtain the final reading.

59

Chapter

4
2D Edge Detection

So no, I don’t think we’ve lost
our edge at all.

Vince McMahon

61

4. 2D Edge Detection

4.1 Introduction

In the 1D Edge Detection chapter we have discussed a set of techniques
designed to detect high-contrast features in one-dimensional profiles. Let us
recall that doing so we were not interested in one-dimensional image profiles
by themselves, but in two-dimensional image features intersecting the line from
which the profile was extracted: we have been transferring the extracted edge
points back to the original image, acquiring fragments of information about the
edges present in the image.

As we know how to detect individual edge points in an image, we may wonder
if we could use the same techniques to detect entire edges – repeatedly detecting
edge points and connecting them to form two-dimensional objects. The answer
to this question depends on the context of the detection.

We cannot do that when we have no information about the edges that we
are going to detect, as 1D Edge Detection techniques relay on the position
and orientation of the scan line, which has to be roughly perpendicular to the
primitive being inspected. However, when we do have an estimate of the feature
being extracted, such approach is valid and promising – we will discuss this idea
further in the Shape Fitting chapter.

In this chapter we will look into the problem of 2D Edge Detection from
the ground up, incorporating the two-dimensional nature of the features into
the detection algorithm, and obtain techniques that identify the edges in an
image without any prior knowledge about them.

4.2 Image Gradient

A derivative of a signal is a measure of local change in the signal value,
and as such is a natural starting point for detection of step edges, regardless
of the dimension of the space in which the signal is defined. A derivative of
two-dimensional signal is usually called a gradient.

In the 1D Edge Detection chapter we have been using partial difference
operators precessed by smoothing of the signal to obtain the derivative of a
profile and identify its prominent extrema as the edge points. We will translate
this approach to two-dimensional space preserving its core idea – calculation of
signal derivative using smoothing and partial difference operators.

62

4.2. Image Gradient

2D Partial Difference

To calculate the gradient of an image we may apply one of the partial differ-
ence operators discussed in the 1D Edge Detection chapter separately in X
and Y dimension. Figure 4.1 demonstrates appropriate convolution masks for
the central difference operator.

DH =
[
−1 0 1

]
DV =

−1
0
1

Figure 4.1: Horizontal and vertical central difference masks.

In effect we obtain two images (or one two-channel image), representing ver-
tical and horizontal derivatives at each pixel. Combining these two components
into vectors representing two-dimensional gradient yields a result demonstrated
in Figure 4.2, where the resulting gradient vectors were drawn onto the original
image.

Figure 4.2: Two-dimensional image derivative computed at each pixel.

For our needs of edge detection, we are interested mainly in the magnitude of
gradient vectors. Figure 4.3 demonstrates a gradient magnitude image, each
pixel of which represents the magnitude of the corresponding gradient vector
(computed using central difference operators as described above).

63

4. 2D Edge Detection

Figure 4.3: Gradient magnitude image of the example image.

We may notice that image edges are indeed discernible in such image, even
though there is also significant amount of high-gradient pixels corresponding to
fine features of the saw texture, rather than object edges. Sensitivity to noise
was the reason for which we have incorporated Gaussian smoothing operator
into our one-dimensional edge detection routines; it is clear that we need similar
precautions in two dimensions.

The need for simple operators

Even though the Canny’s result[9] about the optimality of the derivative
of Gaussian operator for edge detection applications holds for 2D, we will
commence out description with simpler gradient operators, moving to Canny’s
method in the next section.

Contrary to the case of one dimension, in two dimensions the amount of
data to be processed is usually quite large, which creates a trade-off between
accuracy and speed for real-time high-demand inspection systems. It is therefore
reasonable to look into simple and fast operators, even if they are less accurate
that the one advocated by Canny.

Prewitt Operator

One of the first gradient operators, Prewitt operator, addresses this issue
by means similar to the Multiple Sampling technique which we employed to
suppress noise in profiles of image brightness at the extraction level.

64

4.2. Image Gradient

Here the central difference operator is applied to three rows/columns in the
immediate neighborhood of each pixel, which is equivalent to convolving the
central difference operator witch mean average operator running in the opposite
direction, as demonstrated in Figure 4.4.

PH =
[
−1 0 1

]
∗

11
1

 =

−1 0 1
−1 0 1
−1 0 1

PV =

−1
0
1

 ∗
[
1 1 1

]
=

−1 −1 −1
0 0 0
1 1 1

Figure 4.4: Masks of the Prewitt gradient operator.

Sobel Operator

The quality of noise-suppression of the Prewitt operator may be improved
if we replace the indiscriminate mean average with simple approximation of
Gaussian smoothing, which puts emphasis on pixels nearer to the pixel at which
the average is computed. Such operator was proposed by Sobel.

SH =

−1 0 1
−2 0 2
−1 0 1

 SV =

−1 −2 −1
0 0 0
1 2 1

Figure 4.5: Masks of the Sobel gradient operator.

Nixon and Aguado provide[12] an interesting description of derivation of simi-
lar masks for higher dimensions, where both smoothing and differencing compo-
nents are obtained from Pascal’s triangle, however such masks are rarely used in
practice. Sobel masks of bigger dimensions approximate the Gaussian smooth-
ing while not making use of the separability of the Gaussian kernel, which make
them inferior to the actual Gaussian smoothing, as performed by Canny edge
detection method.

65

4. 2D Edge Detection

Figure 4.6 compares the results of bare central difference operator with
those obtained using the Sobel operator. The achieved noise suppression is not
spectacular, but still noticeable.

Figure 4.6: Comparison of bare central difference gradient (on the left) and
Sobel operator gradient.

Scaling

When we derived the masks of Prewitt and Sobel operators we neglected the
scaling of the smoothing operators, i.e. we used smoothing masks such as [1 1 1],
rather than 1

3 [1 1 1]. The operators were defined in this way to allow for faster
computation and are commonly used in this form.

Whenever the smoothing operators are to be compared (or used interchange-
ably, e.g. in edge detection with fixed gradient magnitude threshold) it is im-
portant to remember to normalize their results, multiplying the outcome by the
scaling factor of the smoothing operator omitted in the first place (1

3 for the
Prewitt operator and 1

4 for Sobel). Such scaling was applied to the results of
the Sobel operator in Figure 4.6.

Gradient operators discussed in this section are implemented by Adaptive
Vision Studio 4 filters GradientImage_Mask and GradientImage.

66

http://docs.adaptive-vision.com/current/studio/filters/ImageLocalTransform/GradientImage_Mask.html
http://docs.adaptive-vision.com/current/studio/filters/ImageLocalTransforms/GradientImage.html

4.3. Canny Edge Detector

4.3 Canny Edge Detector

Having discussed the concept of image gradient and a set of simple fixed-
mask gradient operators, now we move our attention to the complete step edge
detection technique described[9] by Canny (the one-dimensional version of which
was our method of choice for detection of step edges in image profiles).

Let us recall that Canny’s method for one dimension may be summarized as
follows:

1. Compute the derivative of Gaussian of the signal.

2. Select the resulting points that:

a) Have magnitude above certain minimum value (Thresholding)

b) Have locally maximum magnitude (Non-maximum Suppression)

Canny’s method for two-dimensional edges retains this schema, but some of
2D-specific details of the individual steps are interesting enough to call for a
detailed discussion.

Gradient by derivative of Gaussian

The Gaussian function, which we have discussed in the 1D Edge Detection
chapter, has a natural formulation in two dimensions:

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2

Apart from the optimal1 trade-off between noise attenuation and edge preser-
vation, the two-dimensional Gaussian filter has two useful, 2D-specific features.
The first one is isotropy – the response of the filter depends only on the distance
from (x, y) to (0, 0); thus the smoothing does not introduce any bias dependent
on the direction of the image edges.

1Under the criteria assumed by Canny.

67

4. 2D Edge Detection

The second interesting feature is separability, which means that the appli-
cation of the two-dimensional Gaussian filter is equivalent to successive appli-
cation of two one-dimensional operators, each processing the signal in different
dimension. Indeed:

gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2

=
1√
2πσ2

e−
x2

2σ2 · 1√
2πσ2

e−
y2

2σ2

= gσ(x) · gσ(y)

Therefore to perform the Gaussian smoothing on an image, we may simply
apply the already discussed one-dimensional smoothing operator successively to
each row, and then to each column of the image. Gradient extraction based on
such smoothing is demonstrated in Figure 4.7.

Figure 4.7: Gradient extraction using Gaussian smoothing with different values
of standard deviation (0.7 on the left, 2.75 on the right).

The example results look promising – in the image on the right the outline
of the object is prominent and consistently brighter that any other element of
the image; the noise is effectively suppressed. On the other hand, the edges
in the image clearly have excessive width, which inhibits the precision of edge
localization. Conversely, image on the left exhibits fine edges, but also worse
separation of edge and noise intensities. It is worth stressing that accurate
adjustment of σ is crucial for performance of the algorithm.

68

4.3. Canny Edge Detector

Hysteresis Thresholding
Once we have computed the image gradient, we need to threshold the gra-

dient magnitude image selecting the high-gradient, prospective edge locations.
Although simple global thresholding described in the Image Thresholding
chapter could be employed for that, Canny pointed out an important drawback
of this method in the context of edge detection.

Let us assume that we set the minimum magnitude threshold value to s, and
the image contains an edge mean magnitude of which is near to s. Even if the
illumination of the scene is uniform, the gradient magnitude of the edge pixels
is bound to fluctuate around s due to inevitable noise introduced by camera
imperfections.

In practice the fluctuation of edge gradient magnitude tend to be quite sig-
nificant, leading to extraction of fragmented, incomplete edges. Figure 4.8
demonstrates two ineffective global thresholding attempts on example gradient
amplitude image. The results on the left are free from noise but incomplete,
while lower threshold used to produce the outcome on the right introduces sig-
nificant amount of noise.

Figure 4.8: Global thresholding of the gradient magnitude image.

Canny proposed2 to address this issue by setting two thresholds, let us denote
them by l and h, where l < h. The locations of magnitude lower than l are

2This approach is a two-dimensional equivalent of the method proposed[13] by Schmitt
in the context of electronic trigger, although Canny did not indicate his inspirations on that
matter.

69

4. 2D Edge Detection

immediately discarded, while locations of magnitude higher than h are imme-
diately accepted. The locations of magnitude between l and h are split into
connected components and each component is accepted only if it is adjacent to
previously accepted (i.e. of magnitude higher than h) locations.

Such topological extension of the usual thresholding, called hysteresis thresh-
olding, proves extremely useful in edge detection applications. Figure 4.9
demonstrates hysteresis thresholding of the example image using two threshold
values used to produce results in Figure 4.8 as l and h. As we can see, the
edges from the low threshold image are retained in their entirety, while all of
the noise is attenuated.

Figure 4.9: Hysteresis thresholding of the gradient magnitude image.

Non-maximum Suppression and Subpixel Precision
A direct translation of one-dimensional condition of locally maximal magni-

tude of edge locations would be to compare each pixel with its neighbors (either
4 or 8), but such approach would effectively yield only isolated, single edge
locations and this is clearly not what we want.

To derive correct translation of non-maximum suppression into two dimen-
sions we need to remember that in 1D edge detection we were analyzing profiles
perpendicular to actual image edges. As the direction perpendicular to an edge
is directly represented by gradient direction, non-maximum suppression in two
dimensions should be performed by comparing each pixel magnitude with its
two neighbors indicated by the pixel gradient direction.

70

4.3. Canny Edge Detector

We may use a similar approach to translate out parabola-fitting technique
of acquiring sub-pixel precise positions of edge points to two-dimensions. If we
sample the image at three points on the line parallel to gradient direction at a
pixel and fit a parabola through the resulting, three-element profile, we obtain
a direct equivalent of the fit that we were doing in one-dimensional case.

Edge detection method is implemented by four Adaptive Vision Studio
4 filters, which share common logic, differing only in output data type. One
can choose between Canny, Deriche and Lanser filters, or between Sobel
and Prewitt algorithms when using _Mask version of filters.

• DetectEdges_AsPaths – returns extracted edges as array of paths.
• DetectEdges_AsRegion – extracts edges and returns them as one re-

gion.
• DetectEdges_AsPaths_Mask – works as DetectEdges_AsPaths, but

can be used with Sobel or Prewitt filters for gradient computing.
• DetectEdges_AsRegion_Mask – the same as previous filter, but result

is stored in region rather than in array of paths.

71

http://docs.adaptive-vision.com/current/studio/filters/2DEdgeDetection/DetectEdges_AsPaths.html
http://docs.adaptive-vision.com/current/studio/filters/2DEdgeDetection/DetectEdges_AsRegion.html
http://docs.adaptive-vision.com/current/studio/filters/2DEdgeDetection/DetectEdges_AsPaths_Mask.html
http://docs.adaptive-vision.com/current/studio/filters/2DEdgeDetection/DetectEdges_AsRegion_Mask.html

Chapter

5
Contour Analysis

Be precise. A lack of precision is
dangerous when the margin of
error is small.

Donald Rumsfeld

73

5. Contour Analysis

5.1 Introduction

Contour analysis can be thought of as a sub-pixel precise counterpart of Blob
Analysis, built upon processing of precise points organized in paths; in the
same way that Blob Analysis is based on processing of pixel-precise regions.

Solutions based on contour analysis typically follow the schema of Blob
Analysis solutions:

1. Extraction – sub-pixel precise paths are extracted from the image, usu-
ally by means of 2D Edge Detection.

2. Processing – the paths are subject to transformations with an intention
of rectifying the path imperfections or extracting its segments that we are
particularily interested in.

3. Feature Extraction – in the final part the numerical and geometrical
features may be computed.

5.2 Path

Path, the fundamental data type of contour analysis, is a simple list of points
defining two-dimensional curve consisting of straight segments; along with one
additional, boolean information indicating if the list is closed or open, i.e., if
the first point should be interpreted as connected with the last one.

Both types of paths occur naturally as results of 2D Edge Detection, as
demonstrated in Figure 5.1. Paths may be also extracted from regions by
computing region contours (always closed paths) or medial axes (both open
and closed).

Characteristic Points

Each non-degenerate path represents an infinite number of points on the
segments between its defining points. To avoid confusion we will consequently
refer to the defining points of a path as its characteristic points.

74

5.3. Segmentation

Figure 5.1: Closed and open paths extracted in 2D Edge Detection.

Polygons
Let us note that our definition of path is quite general – we allow the path to

have duplicate points and self-intersections. This is reasonable because a lot of
important path operators (e.g. the segmentation routines which we are going
to discuss soon) and features (e.g. path length) are well-defined for such paths
and require no additional restrictions.

One exception is extraction of features defined in the context of two-dimensional
shapes enclosed by a path, i.e. sub-pixel precise polygons. Such operators make
sense only when the path divides the space into exactly two parts – interior and
exterior, and thus has to be closed and not self-intersecting.

5.3 Segmentation

It is often the case that we are interested in a specific section of the obtained
object contour, e.g. if we want to measure the angle between two specific straight
segments of the object boundary. Segmentation techniques extract the sections
of a path that represent simple geometric primitives such as straight segments
or circular arcs.

The task of path segmentation may be also formulated in terms of path
approximation – if we approximate a path with a simple polygon, we can split
it into sections corresponding to individual segments of the resulting polygon,
thus obtaining segmentation into straight segments.

75

5. Contour Analysis

The algorithm that will be our basis for developing the path segmentation
methods was introduced as an algorithm for path polygonal approximation.

Ramer Algorithm
Ramer proposed[14] a simple and effective algorithm for approximating a path

with a polygon within a given precision. The algorithm is parametrized with
a value d, denoting maximal distance from the original curve to the resulting
polygon.

Ramer algorithm constructs the approximating polygon from the points of the
original path, i.e. vertices of the resulting polygon are a subset of the original
path points. The algorithm commences by approximating the whole path with
a single segment: for open paths it is the segment between the path endpoints,
for closed paths we may select the endpoints a and b of a path diameter and
process two open sections of the path (a to b, b to a) separately.

The algorithm proceeds recursively. At each recursive call the algorithm
considers a section of the original path already approximated with a single
segment S and finds the point P of the path section that is most distant to S.
If the distance between P and S is smaller or equal to d, then the recursive call
returns S as a feasible approximation for the path section. Otherwise the path
is split at P and the algorithm is run recursively at each of two created sections.

Figure 5.2 demonstrates the partial results of Ramer algorithm at four levels
of recursion, the last image demonstrating the final outcome.

Ramer algorithm may be also used as a means of lossy compression, although
such application is rarely seen in practice, as the object contours are usually
quite space-efficient, at least when compared to the size of the original images.

Straight Segments
Ramer algorithm may be directly applied to segment a path into straight

sections. Once we have obtained the polygonal approximation, we need to split
the path at the vertices of the polygon to produce an array of path sections, each
of which will correspond to a segment that approximates it with the precision
we have decided on.

76

5.3. Segmentation

(a) (b)

(c) (d)

Figure 5.2: Ramer algorithm run on example path with d = 1px.

Results of this approach are demonstrated in Figure 5.3.

Figure 5.3: Segmentation of example path into straight segments based on the
output of Ramer algorithm.

Circular Arcs
Another common type of feature that may be identified in object contours are

circular arcs. A number of approach may be used to look for arciform sections

77

5. Contour Analysis

directly – one idea would be to analyze turn angles at consecutive characteristic
points looking for runs of roughly constant curvature, as would be expected of
a circular arc. Unfortunately, this approach does not perform well for big arcs
– it is often the case that the turn angles at individual characteristic points are
very weak and are easily affected by noise.

Another approach would be to adapt the Ramer algorithm to use arcs rather
than straight segments. The modification is not straightforward, as two end-
points of a path section do not define a unique arc (as they did in case of
segments), so we would need to fit an arc to each section by means of Shape
Fitting. While this does not pose a big problem, we may note that the con-
tours being inspected rarely consist solely of circular arcs1; usually they are a
combination of straight and arciform sections.

To obtain a technique that would segment a path into sections of both types,
we may start with the classic Ramer-based segmentation into straight sections
and post-process its results, joining together short parts that would be well
approximated by an arc.

One approach for such post-processing would be to fit an arc to each pair
of consecutive sections of Ramer-segmented path and compute the maximum
distance between the path and the arc, as well as the path and its current
approximation2. If the maximum distance to the arc is lower, we may conclude
that the arc is better approximation for the consecutive segments and join these
together. This routine would be continued until convergence and in the end we
would classify the sections that resulted in such joining as arciform and the
others as straight.

Two problems may be encountered when this method is applied:

• When the arc being fit to a pair of consecutive straight sections has es-
pecially big radius and small length, so that it is close to a segment, the
resulting improvement of the approximation is tiny and classification of
the part as an arciform section may be confusing.

1Full circles are a common case, but these represent a single primitive and thus do not
need to be segmented.

2Two straight segments or an arc in case of a part that is a result of such joining itself.

78

5.4. Statistical Features

• Once two straight sections are joined, the resulting arc approximation may
be so accurate that it will preclude further joining of the resulting section –
a perfectly arciform path initially segmented into numerous straight parts
has little chances of being fully joined.

First issue may be addressed by limiting the radii of the arcs being fitted to
a predefined threshold (which will be a parameter of the algorithm) – if the
resulting arc is too big we simply do not join the sections we are considering.
This simple solution is perfectly feasible as long as the arcs we intend to extract
have reasonably high relation of length to radius.

A natural solution to the second problem is indiscriminate joining of the
consecutive sections whenever the maximum distance between the path section
and the fitted arc is within the maximum distance we used for the initial Ramer
segmentation.

Figure 5.4 demonstrates an example application of Ramer segmentation
with post-processing with the amendments described above.

Adaptive Vision Studio 4 filter ReducePath implements the Ramer al-
gorithm, while SegmentPath implements the segmentation technique built
upon it as described above.

5.4 Statistical Features

Polygon Moments

In the Blob Analysis chapter we have discussed region moments – general-
ized statistical features based on region pixel coordinates. Equivalent formulas
may be formulated for sub-pixel precise polygons – yet we will need to perform
an integration over the polygon surface rather than simple summation, as the
number of points contained in a non-degenerate polygon is infinite.

In the following equations we assume S to be a polygon defined by a closed,
not self-intersecting path. The raw and central moments of S are defined as:

79

http://docs.adaptive-vision.com/current/studio/filters/PathGlobalTransforms/ReducePath.html
http://docs.adaptive-vision.com/current/studio/filters/PathGlobalTransforms/SegmentPath.html

5. Contour Analysis

(a) (b)

(c) (d)

Figure 5.4: Initial segmentation of the example contour (a) into straight seg-
ments (b) and results of post-processing: straight (c) and arciform (d) path
segments.

mp,q =

∫∫
(x,y)∈S

xpyqdxdy

cp,q =

∫∫
(x,y)∈S

(x− x)p(y − y)qdxdy

and both may be normalized, i.e. divided by the area a of S:

m′
p,q =

1

a
mp,q

c′p,q =
1

a
cp,q

80

5.4. Statistical Features

Computation
As opposed to region moments, the formulas for shape moments do not give

us a direct algorithm for computing any of them – in each case we are left with
a double integration to perform.

Luckily, Green’s theorem defines the relation between any double integral over
simple polygon and line integral over its boundary, which allow to substitute
double integral by a sum of line integrals, each of which will be evaluated over
a segment of the boundary path. For the line integrals of low order, closed
formulas may be obtained, as given[15] by Turkowski for first and second-order
moments.

For instance, this approach allows to obtain the following formula for zeroth
moment of a shape defined by a closed, n-point path S:

m0,0 =
1

2

n−1∑
p=0

(S[p]x · S[p+ 1]y − S[p+ 1]x · S[p]y)

which is the well known formula for the area of polygon based on the cross
product of vectors from (0, 0) to its consecutive vertices.

From the practical point of view it is important that the polygon moments can
be computed precisely, deterministically in linear time (in terms of the number
of their characteristic points).

Applications
As the order of moments (defined as a sum of the moment exponents, i.e.

p+ q for mp,q) increases, the shape-describing information carried by them gets
harder for interpretation and conscious use. In the field of industrial inspection
usage of moments is usually focused on the moments of order 0, 1 and 2.

0th order

There is only one zeroth moment – m0,0, which equals the area of the shape.
Having both exponents equal to zero, this moment indeed ignores the values
of both coordinates of the points contained by the polygon. Apart from direct
applications, this moment is frequently evaluated to normalize (i.e. divide by
the area) the other, higher-order shape moments.

81

5. Contour Analysis

1st order

First order moments are the first moments the normalization of which yields
useful information. The moments m′

1,0 and m′
0,1 represent, respectively, the

average x and y point coordinates of the shape. Together they form the mass
center of the shape – if we imagine the shape as a flat, rigid body, then it would
remain in balance when positioned over a point support in its mass center.

The mass center allow us to define certain geometric features, such us the
shape radius, which we will discuss in the next section.

2nd order

Second order moments are the first moments that reflect the relation between
x and y point coordinates of the shape, and as such, are particularly interesting.
Extracting practical information about a shape from its second order moments
is not trivial though – to do so we will return to the mechanical analogy of flat
rigid body, which we have just introduced.

Under such interpretation, the matrix of the second order central moments
of the shape:

I =

[
c′2,0 c′1,1
c′1,1 c′0,2

]
represents an important concept of mechanics – tensor of inertia, which de-
termines the torque needed to rotate a shape around any axis going through its
mass center (in a similar way that a mass of a body determines the force needed
to give the body the desired acceleration). The torque T needed to change the
angular velocity of the body by ω may be calculated as follows:

T = Iω

Although I determines the inertia for rotation around any axis going through
the mass center, some of them are of particular interests – the principal axes ω′,
which yield stable rotation, i.e. preserve the direction of angular momentum.
These axes represent the eigenvectors of I and as such may be obtained directly
from shape moments.

Figure 5.5 demonstrates the principal axes of inertia of two example shapes.

82

5.5. Geometrical Features

Figure 5.5: Principal axes of inertia (marked in red and yellow) of example
shapes (marked in orange).

Interestingly, these axes may be also obtained using another, yet equivalent
approach: as the axes of an ellipse having the same moments up to the second
order as the shape being considered. An exhaustive description may be found
in the textbook[16, p. 73-75] by Haralick and Shapiro.

The principal axes allow to define at least two useful shape features:

• Orientation – the direction of the major principal axis.

• Elongation – the quotient of major principal axis length and minor prin-
cipal axis length.

The following Adaptive Vision Studio 4 filters extract the statistical
features of a polygon: ShapeArea, ShapeElongation, ShapeMassCenter,
ShapeOrientation, ShapeEllipticAxes.

5.5 Geometrical Features

Radius and Diameter

The principal axes of inertia which we have discussed recently provide ap-
proximate information about the dimensions of the shape. Strict, geometrical
measures may be obtained as generalizations of basic features of circles: radius
and diameter.

83

http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeArea.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeElongation.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeMassCenter.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeOrientation.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeEllipticAxes.html

5. Contour Analysis

Radius of a shape may be defined as the maximum distance between its
mass center and any of its points. It is not hard to prove that such point has
to be a characteristic point of the polygon, and therefore may be found in a
straightforward search.

Diameter of a shape may be defined as the maximum distance between any
two points of the shape. Also in this case in may be shown that such points
are always the characteristic points of the polygon and as such may be found
in O(n2) time. This result may be improved to O(n log n) using the rotating
calipers technique[17] on the convex hull of the polygon (see below).

Both these features offer an alternative definition for the orientation of a
polygon – the vector from the mass center of the shape to the most distant point
(corresponding to shape radius) is especially interesting, as it yields result in full
range (0◦, 360◦), as opposed to the moment-based orientation or the orientation
of the diameter, which are limited to the (0◦, 180◦) range.

Convex Hull and Convexity

Convex hull is the smallest convex polygon that contains a set of points.
Finding such polygon is a classic problem of computational geometry for which
numerous efficient algorithms has been developed. Popular textbook by Cormen
et al. covers[18] some of them, probably the most popular one being the Graham
algorithm.

Slightly less frequently mentioned method[19] by Andrew preserves the gen-
eral idea of Graham algorithm yet uses lexicographic rather than angular sort-
ing, which is simpler and less prone to errors (e.g. due to the imperfections of the
floating-point representation) and as such it is worth considering for practical
applications.

Once we know how to compute the convex hull of a path we may define a
convexity factor of a shape as the quotient of the area of the shape and the
area of its convex hull. The obtained numeric feature allows to estimate the
magnitude of cavities and holes present in the objects being inspected.

84

5.5. Geometrical Features

Circle and Circularity

One trivial method to find the smallest circle containing a set of points is
based on an observation, that such circle has to have some three of the given
points on its boundary (or two in a special case when the points lie on the circle
diameter) – otherwise we could shrink the circle and still cover all of the points.

We may therefore iterate over all triples of the given points, compute a unique
circle passing through each of them and select the smallest feasible (i.e. covering
all points) circle. Such solution would work in Θ(n4) time, n denoting the
number of given points, which may result in a significant computational burden
even for relatively short paths.

Much faster solution based on iterative improvement was proposed[20] by
Welzl – his randomized algorithm achieves linear expected running time and
allows for a concise, recursive implementation.

We may define at least three reasonable numerical features that reflect the
similarity between a given shape and a circle:

1. Quotient between the area of the shape and the area of its bounding circle.

2. Quotient between the area of the shape and the area of a circle with the
same radius.

3. Quotient between the area of the shape and the area of a circle with the
same perimeter.

All of these features assume values between 0 and 1, 1 being achieved for perfect
circles. The selection of particular method should be based on the nature of
expected deviation of the shape from a perfect circle. For instance, the second
method, being based on a radius of the shape, will be particularly responsive
to elongated shapes, while perimeter-based feature will be sensitive to high
curvature of the object boundary.

Some of the features being discussed in this section are well defined
for all paths, including open and self-intersecting ones. These features
are implemented in Adaptive Vision Studio 4 by filters from the
Path Features category: PathBoundingBox, PathBoundingCircle,

85

http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathBoundingBox.html
http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathBoundingCircle.html

5. Contour Analysis

PathBoundingRectangle, PathConvexHull, PathDiameter and
PathLength.

The following Adaptive Vision Studio 4 filters extract the fea-
tures defined only for polygons: ShapeConvexity, ShapeCircularity and
ShapeRectangularity.

86

http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathBoundingRectangle.html
http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathConvexHull.html
http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathDiameter.html
http://docs.adaptive-vision.com/current/studio/filters/PathFeatures/PathLength.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeConvexity.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeCircularity.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFeatures/ShapeRectangularity.html

Chapter

6
Shape Fitting

Geometry was the first exciting
course I remember.

Steven Chu

87

6. Shape Fitting

6.1 Introduction

Images being subject to interpretation in industrial inspection tasks often
contain simple geometric shapes such as segments or circles. Precise extrac-
tion of such features is the key point for various measurement tasks, such as
calculating the diameter of a cylinder head, demonstrated in Figure 6.1.

Figure 6.1: Example application of shape fitting – the diameter of a cylinder
head is calculated indirectly as the diameter of a circle fitted to the image.

Various approaches may be taken to obtain abstract information about geo-
metrical primitives represented in an image. The well known Hough transform
performs an exhaustive search iterating through the space of all possible shapes,
e.g. all possible radii and centers of circles, within a predefined constraints and
with a predefined precision. Each candidate is verified using gradient direction
information at the pixels that it is expected to intersect.

Unfortunately, such approach often proves computationally demanding and
easy to disrupt by imperfections of the shape being identified. Moreover, the
method requires careful calibration of the search space constraints and precision
of the search. Figure 6.2 demonstrates a typical problem that occurs frequently
when the precision of the search is too low, causing the Hough transform to yield
multiple results, none of which is accurate.

An alternative solution would be to apply one or two-dimensional edge de-
tection to extract a group of edge points on the boundary of the shape being
examined and fit the abstract shape to such points.

88

6.2. Lines

Figure 6.2: Hough transform-based circle detection performed on the example
image.

In this chapter we will overview the classic methods of fitting lines and circles
to sets of points in two-dimensional space. We will also demonstrate a par-
ticularily useful technique based on one-dimensional edge detection and shape
fitting that allow to fit approximate positions of abstract primitives to their
actual occurrences.

6.2 Lines

The problem of fitting lines to data frequently occurs in the field of statistics,
where it is called linear regression. In this context the aim of the fitting is to
find a line in the form y = ax + b that optimally models the relation between
the (controlled, error-free) variable x and (possibly affected by errors) y, given
a set of data samples (xi, yi).

The popular slope-intercept representation of lines works well for statistical
regression, where the xi of data samples are unique, but causes problems in
the general case, as the vertical lines can not be represented in this form and
nearly-vertical lines require extremely high magnitude of the slope parameter,
jeopardizing the numeric stability of the computation. We will therefore use
the general equation of a line:

{(x, y) : ax+ by + c = 0}

89

6. Shape Fitting

together with a normalization condition:√
a2 + b2 = 1

The normalization of the vector (a, b) asserts that every line has a unique
representation and inherently includes the necessary requirement of (a, b) 6=
(0, 0). It also allows easy computation of the distance between the line and any
point (xi, yi), which equals:

|axi + byi + c|√
a2 + b2

= |axi + byi + c|

Problem Formulation

From the above, we can formulate a concise definition of the optimization
problem that we want to solve for any set of points P . Assuming the standard
least-squares criterion that aims at minimization of the squared distances from
each points to the resulting line, we wish to minimize the following function:∑

(x,y)∈P

(ax+ by + c)2

over all lines (a, b, c) that meet the criterion
√
a2 + b2 = 1.

Moment-based Solution

Interestingly, it turns out that we have already discussed almost identical
problem, although stated rather covertly. Minimization of the squared distances
from a point set to a line is, under physical terminology, nothing else that finding
the axis of minimal inertia of the point set; as its moment of inertia equals the
sum of squared distanced from each point to the axis of rotation.

As we have already indicated in the Contour Analysis chapter, such axis
may be computed as the eigenvalue of the inertia tensor of the rigid body:

I =

[
c′2,0 c′1,1
c′1,1 c′0,2

]
90

6.2. Lines

All that we need to do to adapt this solution to our needs is to define the
moments of a point set P , which are directly equivalent to the moments which
we have defined for regions:

mp,q =
∑

(x,y)∈P

xpyq

cp,q =
∑

(x,y)∈P

(x− x)p(y − y)q

Equivalent result may be also obtained directly using multivariate analysis –
the derivation may be found in [16, p. 588-591].

Figure 6.3 demonstrates example results of least-squares line fitting.

Figure 6.3: Example results of least-squares line fitting.

Outlier Suppression

It is often the case that, due to the imperfections of edge extraction or the
object being analyzed, the input data contains points that do not represent
accurately the shape that we wish to extract; as demonstrated in the image on
the right of Figure 6.3. Such points, called outliers, distort the outcome of the
fitting and should be skipped or suppressed in the computation.

91

6. Shape Fitting

Random Sample Consensus

Random Sample Consensus, proposed[21] by Fischler and Bolles, is a popu-
lar, probabilistic method of robust estimation that exhibits good performance
against outliers, even when they represent a significant fraction of the data.

The method iteratively selects a random minimal sample of points that allows
an estimation of the results, in our case that would be a pair of points, to which
a line L is fitted. After each such estimation the algorithm counts the data
points that support the estimate, i.e. lie within a predefined distance d from L.

The algorithm terminates after a predefined number of iterations, fitting a
line to all points that supported the most supported estimate.

The major drawback of such approach in the context of industrial applications
is its probabilistic nature – for the robustness of the systems being designed it
is crucial that the methods being deployed should succeed and fail determinis-
tically and consistently on similar data instances.

Iterative Suppression

Another, more predictable in its outcomes, approach would be to improve the
results of the fitting iteratively, progressively suppressing the influence of the
points that are distant from the estimates being obtained.

After each least-squares fit yielding a line L, we may calculate the distances
between each data point and L and inspect the distribution of distances looking
for possible outliers. If we compute a nonnegative weight wi for each point
reflecting our belief that the point i is not an outlier, we could limit the influence
of the points with low weight using weighted moments defined as follows:

92

6.2. Lines

mp,q =
∑

(x,y,w)∈P

wxpyq

m′
p,q =

1

t
mp,q

cp,q =
∑

(x,y,w)∈P

w(x− x)p(y − y)q

c′p,q =
1

t
cp,q

where t =
∑

(x,y,w)∈P w is a sum of all weights. Such values would be used
instead of the classic moments in the successive iteration of the algorithm.

There are a number of possibilities regarding the specific methods of calcu-
lating the weights wi given the distances di between each point and the last
estimate of the line. A classic method proposed by Huber computes the weights
as:

wi =

{
1 di ≤ t
t
di

di > t

where the threshold t may be either calculated from the distribution of
distances di (e.g. as its median) or be left as a parameter of the algorithm.
Example results of iterative outlier suppression are demonstrated in Figure
6.4.

Figure 6.4: Example results of line fitting without and with outlier suppression.

93

6. Shape Fitting

Segments

Line fitting may be directly applied to fit segments to data points, as we may
start with fitting a line to the points and then compute the resulting segment
as a section of the line defined by the orthogonal projection of the input points
onto the line.

Adaptive Vision Studio 4 filter FitLineToPoints implements the
line fitting along with optional iterative outlier suppression, while the
FitSegmentToPoints performs analogous segment fitting.

6.3 Circles

We now move our attention to the problem of circle fitting. A canonical
equation used to represent circles is the following:

{(x, y) : (x− a)2 + (y − b)2 = r2}

where (a, b) is the center of the circle and r denotes its radius. Under this
representation, distance between the circle and a point (xi, yi) is given by:

|
√
(xi − a)2 + (yi − b)2 − r|

The least-squares circle fit to a point set P may be therefore formulated as
the minimization of the error:∑

(x,y)∈P

(
√
(x− a)2 + (y − b)2 − r)2

over possible circles (a, b, r).

Unfortunately, this problem is nonlinear and cannot be solved by a finite
algorithm. The existing methods for circle fitting may be divided into two
groups: iterative algorithms that optimize the least-squares function defined
above (these methods are usually referred to as geometric) and methods that
optimize other, easier to solve, cost functions (these methods are usually called
algebraic).

94

http://docs.adaptive-vision.com/current/studio/filters/Geometry2DFitting/FitLineToPoints.html
http://docs.adaptive-vision.com/current/studio/filters/Geometry2DFitting/FitSegmentToPoints.html

6.3. Circles

The geometric fit is theoretically enticing, but causes significant problems in
practical applications. Every algorithm trying to find the least-squares fit is
inherently prone to divergence or convergence to suboptimal local minimum.
Moreover, the geometric fit algorithms tend to be computationally expensive,
at least when compared with the popular methods of algebraic fitting.

At the same time the best available methods of algebraic fitting yield accurate,
close-to-optimal results and are free from this limitations – both experimental
and theoretical arguments on this issue can be found in an exhaustive work[22]
of Chernov.

Algebraic Fit

Perhaps the simplest method of algebraic circle fitting was given by Kasa,
who proposed to minimize the following error function:∑

(x,y)∈P

((x− a)2 + (y − b)2 − r2)2

After a simple substitution A = −2a, B = −2b, C = a2 + b2 − r2 and
introducing artificial, third dimension of the point set z = x2 + y2 we get:∑

(x,y)∈P

(z +Ax+By +D)2

The minimum of this function can be found by computing the partial deriva-
tives with respect to A, B, C – we require that each such derivative is equal to
zero at the minimum, which leads to the following system of linear equations:

m′
2,0,0A+m′

1,1,0B +m′
1,0,0C = −m′

1,0,1

m′
1,1,0A+m′

0,2,0B +m′
0,1,0C = −m′

0,1,1

m′
1,0,0A+m′

0,1,0B + C = −m′
0,0,1

where m′
p,q,s denotes three-dimensional (together with the artificial dimen-

sion z), normalized moments. Such system can be solved efficiently by methods
of linear algebra.

95

6. Shape Fitting

Kasa’s method has a number of advantages: it is very fast, it is easy to imple-
ment, and its moment-based schema is easy to equip with the iterative outlier
suppression which we have described in the last section. Its major weakness is
poor performance on data representing small arcs (10 degrees or less), for which
it often fails to yield a feasible estimation.

Fortunately, more advanced methods of algebraic fitting by Pratt and Taubin
achieve far better performance retaining the advantages of the algebraic fit.
Details of these methods as well as a benchmark of their performance are given in
the already mentioned work[22], which indicates the Taubin method as feasible
for the majority of practical applications.

Figure 6.5 demonstrates the results of Kasa and Taubin fit for the data set
representing small circular arc.

Figure 6.5: The algebraic fit of Kasa (on the left) and Taubin (on the right).

Circular Arcs
Circle fitting may be easily modified to return circular arcs rather than full

circles. Again, all that we need to do is to compute the orthogonal projection
of the input points onto the resulting circle and select the smallest section of
the circle that contains all projection points.

Adaptive Vision Studio 4 filter FitCircleToPoints implements a se-
lection of algebraic line fitting methods along with optional iterative outlier

96

http://docs.adaptive-vision.com/current/studio/filters/Geometry2DFitting/FitCircleToPoints.html

6.4. Fitting Approximate Primitives to Images

suppression, while the FitArcToPoints performs analogous fitting of cir-
cular arcs.

6.4 Fitting Approximate Primitives to Images

Utilizing the shape fitting techniques in the context of image analysis requires
extraction of the points to which the primitives will be fitted. Typically such
extraction is done by means of 1D Edge Detection or 2D Edge Detection,
which allow to fit the shapes to step edges or ridges present in the image.

The methods of 1D Edge Detection allow to build particularly useful tech-
nique for fitting approximately positioned primitives to their actual occurrences.
The idea is to take a rough estimation of the primitive location and construct
a set of scan lines going across the approximate primitive. By performing one-
dimensional edge or ridge detection along each scan line, we obtain a set of
points that, hopefully, represent the actual position of the primitive being lo-
cated.

In Figure 6.6 a segment is fitted to the edge of an object, while Figure 6.7
demonstrates an example of fitting a circle to a circular ridge.

Figure 6.6: Shape fitting applied to fit a segment to an edge.

97

http://docs.adaptive-vision.com/current/studio/filters/Geometry2DFitting/FitArcToPoints.html

6. Shape Fitting

Figure 6.7: Shape fitting applied to fit a circle to a ridge.

Adaptive Vision Studio 4 provides filters for each type of primitive,
one filter of a pair fitting the primitive to image edges, second – to image
ridges, and third – to image stripes:

• FitArcToEdges, FitArcToRidge, FitArcToStripe

• FitCircleToEdges, FitCircleToRidges, FitCircleToStripe

• FitPathToEdges, FitPathToRidges, FitPathToStripe

• FitSegmentToEdges, FitSegmentToRidges, FitSegmentToStripe

6.5 Examples

Measurements
Figure 6.8 demonstrates an application of the shape fitting in which it is

used to measure the angle between two edges of a saw tooth.

98

http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitArcToEdges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitArcToRidge.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitArcToStripe.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitCircleToEdges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitCircleToRidges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitCircleToStripe.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitPathToEdges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitPathToRidges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitPathToStripe.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitSegmentToEdges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitSegmentToRidges.html
http://docs.adaptive-vision.com/current/studio/filters/ShapeFitting/FitSegmentToStripe.html

6.5. Examples

Figure 6.8: An example application of shape fitting.

99

Chapter

7
Template Matching

If Edison had a needle to find in
a haystack, he would proceed at
once with the diligence of the bee
to examine straw after straw until
he found the object of his search.

A little theory and calculation
would have saved him ninety per
cent of his labor.

Nikola Tesla

101

7. Template Matching

7.1 Introduction

We have already discussed a number of methods that may be utilized for ob-
ject localization. For instance – we can use simple Image Thresholding (possi-
bly together with Blob Analysis) to identify objects of contrasting brightness.
1D Edge Detection may be applied to locate object boundaries whenever we
already know its approximate position. Contour Analysis allows to identify
objects by analysing the paths which we have previously extracted using 2D
Edge Detection etc.

While these methods allow to construct tailored solutions for particular
applications, identification problems may turn out to be too complex to allow
for a convenient application of any of the above. Moreover, specialized solutions
are inherently coupled with the particular object to be found, which makes it
hard to update the inspection system when the problem specification changes
(e.g. because one of the components used in the production is replaced by
another).

In this chapter we will discuss the most general-purpose technique of object
localization – template matching, which allows to identify parts of an im-
age that match, under some criterion of similarity, an arbitrarily chosen image
template. Such methods not only allow to solve identification problems that
otherwise could not be tackled, but also provide a convenient (yet often more
computationally expensive) alternative to the methods that we have discussed
before.

Figure 7.1: An example input for a template matching problem – occurrences
of the template depicted on the left are to be found in the image of the right.

102

7.2. Brightness-Based Matching

The most important part of any template matching method is the specific
measure of image similarity that will be used to evaluate possible matches. We
need such measure not only to design the algorithm, but also to define the task
in the first place – if we are supposed to find the template occurrences, we need
to specify what does it mean that a template occurs at some position in an
image.

A template aligned over an image at some position corresponds to a section of
the image that it overlaps. If we assume that the possible template alignments
are pixel-precise, the problem of evaluating the quality of the match is essentially
a problem of calculating the similarity of two images of equal dimensions.

In this chapter we will discuss two groups of template matching techniques,
differing in image similarity measure they are built upon:

• Brightness-based matching evaluates the image similarity using bright-
ness properties of the images.

• Edge-based matching compares the gradient-based features of both
images.

7.2 Brightness-Based Matching

Brightness-based matching evaluates possible template alignments using mea-
sures of image similarity based on the relation between the brightness of the
corresponding pixels of the images being compared.

Image Correlation and Image Difference
While some of the measures of image similarity have natural formulation

which yields high values for well-correlated images and low values for images
that differ significantly, other are easier to define conversely, as measures of
difference between images. To distinguish between these two groups we will
use the term image correlation when referring to direct measures of image
similarity and image difference when considering measures of dissimilarity.
Naturally, both are equally suitable for our needs.

We will discuss three important measures of image similarity in the context
of a simple comparison benchmark demonstrated in Table 7.1.

103

7. Template Matching

ME MSE NCC

(a) 54.196 3933.365 0.090

(b) 8.455 623.833 0.702

(c) 10.894 271.555 0.866

(d) 18.528 550.718 1.000

Table 7.1: Image similarity measures evaluated on example image pairs.

Mean Error (ME)

Perhaps the simplest measure of image difference is the average of its pixel-
wise differences, i.e.:

ME(Image1, Image2) =
1

n

∑
x,y

|Image1[x, y]− Image2[x, y]|

where n denotes the number of pixels within the image dimensions.

It is important to note that the response of this measure to a single differ-
ence depends linearly on its magnitude. This is not an optimal behavior for
template matching purposes – we should use a measure that will amplify strong
differences, otherwise a big number of small differences (which are inevitable
due to the noise and lightning imperfections) will have impact on the result
comparable with a small number of extreme differences (which should weight
significantly on the score of a possible match).

This issue may be noticed in Table 7.1 examples (b) and (c). The first
one yields lower mean error, even though it misses important part of the tem-

104

7.2. Brightness-Based Matching

plate while the second one matches the structure of the template perfectly, but
contains fine differences over its entire area.

Mean Squared Error (MSE)

This problem is easy to address directly, by powering each term of the average:

MSE(Image1, Image2) =
1

n

∑
x,y

(Image1[x, y]− Image2[x, y])2

Indeed, we may notice that MSE of the benchmark pair (c) is indeed less
than half of MSE of (b).

This measure is already feasible for applications in which the lightning may
be relied on to be constant and uniform. Unfortunately, any change in the
image brightness will heavily increase both ME and MSE. This effect may be
noticed in the results for benchmark dataset (d), the second image of which is
the result of linear transformation (0.5x− 100) of the first image.

Normalized Cross-Correlation (NCC)

To overcome this issue we will move our attention towards an important
measure of image correlation – normalized cross-correlation.

Normalized cross-correlation is based on an interpretation of an image as
a simple one-dimensional vector of its n pixel values. Such interpretation is
accurate as long as we compute the image similarity pixel-by-pixel, disregarding
the spatial positions of the pixels.

For meaningful comparison of two such vectors, we need to subtract mean
brightness of each image from its pixel values, thus eliminating the additive
factor that would distort the proportions between individual dimensions of each
vector. After such subtraction we will be left with two vectors, each having n
elements of the form Image[i, j]−m.

Having eliminated the additive factor from each image, we may now deal
with the multiplicative factor by normalizing each vector, i.e. by division of
each element by the vector length computed as

√∑
i,j(Image[i, j]−m)2, which

105

7. Template Matching

happens to be the exact definition of the standard deviation σ of the original
image pixel brightness.

Once we have reduced each image to the form of normalized, n-dimensional
vector, we may evaluate their similarity by computing the angle θ between them.
Such angle may be easily obtained, as the dot product of two normalized vectors
a and b equals the cosine of the angle between them:

cos(θ) =

n∑
i=1

aibi

We may actually leave the result in the form of cos(θ) as the cosine will con-
veniently scale the result to the (−1.0, 1.0) range. Putting the pieces together,
we obtain the formula for the normalized cross-correlation of two images:

NCC(Image1, Image2) =
1

nσ1σ2

∑
x,y

(Image1[x, y]−m1)(Image2[x, y]−m2)

The obtained method is invariant to linear changes in image brightness and
proves suitable on the benchmark data set. From now on we will assume this
is the method that our template matching algorithm will be based on.

Search Procedure

Having selected a feasible brightness-based measure of image similarity, we
may proceed to discussion of the search process itself.

Template Correlation Image

An exhaustive search for the template occurrences is straightforward to define
– we may consider each possible alignment of the template over the image and
compute the normalized cross-correlation factor between the template and the
part of the image that it overlaps. Results of such search may be conveniently
represented on an image, each pixel of which represents the similarity factor of
the template aligned over the pixel. Example template correlation image for the
input data from Figure 7.1 is demonstrated in Figure 7.2.

106

7.2. Brightness-Based Matching

Figure 7.2: Example template correlation image. Each pixel takes a value
between −1.0 (black) and 1.0 (white).

Such image allows to identify the matching locations in the classic way re-
sembling the criteria that we have used to find edge points in the 1D Edge
Detection chapter: by extracting locally maximal points (non-maximum sup-
pression) of magnitude greater than a predefined threshold. Example results
are demonstrated in Figure 7.3.

Figure 7.3: Local maxima of the example template correlation image stronger
than 0.75 on the left, corresponding matches in the original image on the right.

Pyramid Matching

A major drawback of such simplistic search for the template occurrences lies
in the computational cost of calculating the normalized cross-correlation at each
location. We can trade the precision of the search for speed if we reduce the
resolution of the images that we are to work with, but then we would have

107

7. Template Matching

to face the problem of low precision, which is often equally undesirable as the
problem of high processing time.

Let us define the notion of image pyramid as a series of images, each image
being a reduced-resolution counterpart of the previous image. Usually the res-
olution is reduced by the factor of two in each dimension, as demonstrated in
Figure 7.2. The elements of image pyramid are conventionally referred to as
levels, the original image being the first element at level 0.

Table 7.2: Example image pyramid.

Pyramid matching is a technique proposed[23] by Tanimoto, that utilizes
image pyramids to combine advantages of high-precision search for template
occurrences in the original images with the benefits of high-speed search in the
downsampled images.

Pyramid search commences by computing pyramids of both the input images.
The height of the pyramid is a parameter of the algorithm. It should be set to
maximum value for which the template is still recognizable on the highest level
of its pyramid.

Once the image pyramids are computed, the exhaustive search for template
occurrences is run using significantly downsampled images on the highest pyra-
mid level. Similar search is then repeated at successive pyramid levels down
to the original images, however on each level only the template positions that
scored high on the previous level are considered.

In this way the image areas that are unlikely to contain template occurrences
are pruned from the computation on the coarse level, while promising positions

108

7.2. Brightness-Based Matching

are pursued through every level and in the end are identified with high precision
on the original images.

Multi-angle Matching

So far we have been assuming that the template to be identified has a fixed
orientation in relation to the image axes, which is rarely the case in practice.
The search process that we have described has to be therefore extended to allow
for rotations of the template.

To achieve that, we will add two additional parameters to the specification of
the problem instance: a range of allowed orientations and the angular precision
of the search. For instance, angle range (−15◦, 15◦) and angle precision 1.0◦

would mean that 31 rotations of the input template shall be taken into account
in the search routine. For each such rotations, separate pyramid of the template
image will be computed.

In the search procedure itself we need to identify possible match candidates
using tuples of (position, rotation), rather than sole positions. As such exten-
sion of the pyramid search increases the computational load roughly by the
factor of the number of rotations to be considered, it is advisable to limit the
range of angles being considered whenever possible (e.g. when technical con-
ditions prevent significant deviations of the template occurrences orientation).
Example results obtained using this technique are presented in Figure 7.4

Figure 7.4: Results on the multi-angle matching of the example data.

Similar extension may be used to match the template on multiple scales, yet
such need is less common than the multi-angle matching.

109

7. Template Matching

Offline Phase
From the above description of pyramid matching it is clear that certain

amount of preprocessing is required both for the template and the search image.
It is important to note, that the computational load of preprocessing for these
two images is not equally important.

It is extremely rare to perform template matching with one-off template –
usually the template is fixed and used for inspection of a whole series of images,
e.g. being captured and analyzed online. The preprocessing of the template
image almost always may be performed offline and as such does not need to
be the focus of possible optimizations. The results of such preprocessing along
with the template image are often saved in a form of atomic datatype for easy
reuse.

The preprocessing of the search image on the other hand in most cases has to
be performed online and therefore its efficiency may be crucial for the feasibility
of the whole template matching-based solution. It is worth noting that the
extension of the pyramid matching to multiple orientations requires computing
of separate pyramids of the template image for every possible rotation, while
the preprocessing of the search image remains limited to the calculation of a
single pyramid.

The measures of image similarity are implemented in Adaptive Vision
Studio 4 filters:

• ImageCorrelation, ImageCorrelationImage
• ImageDifference, ImageDifferenceImage

First filter of each pair computes a single similarity value for two images
of equal dimensions, while the second filter performs a template similarity
evaluation of each possible template alignment and represents the results
in form of an image, as previously described.

Brightness-based pyramid matching is implemented in three Adaptive
Vision Studio 4 filters: CreateGrayModel, LocateSingleObject_NCC
and LocateMultipleObjects_NCC – first filter performs the offline, tem-
plate preprocessing phase and stores the results in atomic, reusable
datatype called model, which can be later used to perform the actual match-
ing using the second and third filter.

110

http://docs.adaptive-vision.com/current/studio/filters/ImageMetrics/ImageCorrelation.html
http://docs.adaptive-vision.com/current/studio/filters/ImageMetrics/ImageCorrelationImage.html
http://docs.adaptive-vision.com/current/studio/filters/ImageMetrics/ImageDifference.html
http://docs.adaptive-vision.com/current/studio/filters/ImageMetrics/ImageDifferenceImage.html
http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/CreateGrayModel.html
http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/LocateSingleObject_NCC.html
http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/LocateMultipleObjects_NCC.html

7.3. Edge-Based Matching

7.3 Edge-Based Matching

While the properties of normalized cross-correlation and efficiency boost of-
fered by the pyramid matching make decent implementations of brightness-
based template matching suitable for a range of typical applications, the al-
gorithm retains a few weaknesses such as sensitivity to non-linear illumination
changes and low capability of matching partially visible (occluded) template
occurrences.

As we have already noted, image edges are usually well preserved under dis-
turbances of the illumination. Moreover, edges of an object define precisely its
shape and therefore are a suitable discriminant for the identification of possible
matches. The idea of edge-based template matching has been subject to ex-
tensive research and numerous measures of edge-based similarity between two
images have been proposed.

Symmetric Methods

Perhaps the most fundamental classification of the edge-based template match-
ing methods would be based on the relation between the template image and
search image processing being performed by the algorithm. The earliest edge-
based template matching methods were built upon edge extraction performed
in the same way on both images.

One of the earlies methods was proposed[24] by Borgefors, who suggested
to extract the edge pixels in both images and evaluate the matches using the
mean squared distance between each edge pixel of the template image and
the nearest edge pixel in the search image.

Rucklidge proposed[25] a similar measure based on the Hausdorff distance
between the edges extracted in both images, in which the difference between
two images equals the maximum of two distances:

• Longest distance between a template image edge pixel and any of the
search image edge pixels.

• Longest distance between a search image edge pixel and any of the tem-
plate image edge pixels.

111

7. Template Matching

The major weakness of these and similar methods lies in the very idea of
symmetric edge extraction. While the accurate edge extraction in the template
image should not pose a problem, the assumption that the method which worked
for the template image will consistently work for each search image, possibly
under variable lightning conditions, is by far overoptimistic.

Moreover, both methods are inherently sensitive to occlusions and as such
have few, if any, advantages over the normalized cross-correlation grayscale-
based template matching.

Asymmetric Methods
To overcome the limitations of the symmetric edge-matching we need to move

towards asymmetric methods. Steger proposed[26] to perform full edge detec-
tion in the template image, precisely identifying its contours; while each search
image would be subject only to simple gradient computation on its entire area.
Each possible match is then evaluated based on the correspondence of the gra-
dient direction between the template and the search image, but only at the
positions of template edge pixels.

This idea is demonstrated in Figure 7.5, where we use colors from the HSV
circle to represent gradient directions.

Such approach immediately eliminates the problem of accurate edge extrac-
tion in the search image, as no such extraction is performed. Moreover, it uti-
lizes matching of the edge directions, not only their presence, which was earlier
demonstrated[27] by Olson et al. as advantageous in eliminating false-positive
results in the case of Hausdorff distance metric.

The specific method of calculating the score of a match proposed by Steger
is the simple sum of cosines of the angles between the corresponding gradient
vectors, resembling the idea behind the normalized cross-correlation measure.

Matching based on gradient direction does not preclude the application of
the pyramid schema. It is interesting to note that the asymmetric method
actually outperforms the traditional grayscale-based template matching in terms
of speed, as the evaluation of each possible match is limited to the edge pixels
of the template image; while the additional burden of computing the gradient

112

7.3. Edge-Based Matching

(a) (b)

(c) (d)

Figure 7.5: Asymmetric edge processing – template image (a) is subject to full
edge detection after which gradient direction at its edge pixels is computed (c),
while for the corresponding section of the search image (b) computation of the
gradient direction is performed indiscriminately on its entire area (d).

of search image pyramid is not significant (compared with the dominating cost
of the match evaluation).

The method also works well against occlusions, as each missing edge pixel
in the search image contributes at most the penalty of −1 to the final score,
which equals in magnitude the input of a perfectly matched gradient direction,
yielding cosine value of 1. A detailed evaluation of the performance of this
method is given in [28].

Edge-based template matching is implemented in three Adaptive Vi-
sion Studio 4 filters: CreateEdgeModel, LocateSingleObject_Edges
and LocateMultipleObjects_Edges

113

http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/CreateEdgeModel.html
http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/LocateSingleObject_Edges.html
http://docs.adaptive-vision.com/current/studio/filters/TemplateMatching/LocateMultipleObjects_Edges.html

7. Template Matching

7.4 Examples

Positioning of Scope Primitives
Template matching techniques are commonly applied to position scan lines,

regions of interest, prototype shapes, etc. over an appropriate element of the
object being inspected. To do so, a characteristic object location of a fixed posi-
tion in relation to the area being measured is selected, and the scope primitives
are defined relatively to the characteristic location.

Then, during the actual inspection, characteristic locations of the object in-
stances are identified using template matching techniques, and the scope prim-
itives are positioned accordingly, as demonstrated in Figure 7.6.

Figure 7.6: Template matching used for alignment of the scan lines for 1D
Edge Detection.

114

Bibliography

[1] Mehmet Sezgin and Bülent Sankur. Survey over image thresholding tech-
niques and quantitative performance evaluation. J. Electronic Imaging,
13(1):146–168, 2004.

[2] Judith Prewitt and Mortimer Mendelsohn. The analysis of cell images.
Annals of the New York Academy of Sciences, 128:1035–1053, 1966.

[3] J. N. Kapur, P. K. Sahoo, and A. K. C. Wong. A new method for gray-level
picture thresholding using the entropy of the histogram. Computer Vision,
Graphics, and Image Processing, 29:273–285, 1985.

[4] T. W. Ridler and S. Calvard. Picture thresholding using an iterative se-
lection method. IEEE Transactions on Systems, Man and Cybernetics,
SMC-8(8):630–632, 1978.

[5] N. Otsu. A threshold selection method from gray level histograms. IEEE
Trans. Systems, Man and Cybernetics, 9:62–66, 1979.

[6] Pierre Soille. Morphological Image Analysis: Principles and Applications.
Springer-Verlag, 2nd edition, 2003.

[7] Azriel Rosenfeld. Connectivity in digital pictures. Journal of the ACM,
17(1):146–160, 1970.

115

Bibliography

[8] Carsten Steger, Markus Urlich, and Christian Wiedemann. Machine Vision
Algorithms and Applications. WILEY-VCH, 2008.

[9] John Canny. A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679–698,
1986.

[10] Ramesh Jain, Rangachar Kasturi, and Brian Schunck. Machine Vision.
MIT Press and McGraw-Hill, 1st edition, 1995.

[11] J. Brian Subirana-Vilanova and Kah Kay Sung. Ridge-detection for the
perceptual organization without edges. In Fourth International Conference
on Computer Vision, pages 57–64, 1993.

[12] Mark Nixon and Alberto Aguado. Feature Extraction & Image Processing.
Academic Press, 2nd edition, 2008.

[13] Otto Schmitt. A thermionic trigger. Journal of Scientific Instruments,
1938.

[14] U. Ramer. An iterative procedure for the polygonal approximation of plane
curves. Computer Graphics and Image Processing, 1:244–256, 1972.

[15] Ken Turkowski. Computing 2d polygon moments using green’s theorem.
Apple Technical Report, 1997.

[16] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision, volume 1.
Addison-Wesley, 1992.

[17] Godfried Toussaint. Solving geometric problems with the rotating calipers,
1983.

[18] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2 edition, 2001.

[19] A. M. Andrew. Another efficient algorithm for convex hulls in two dimen-
sions. Information Processing Letters, pages 216–219, 1979.

[20] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Hermann
Maurer, editor, Proceedings of New Results and New Trends in Computer
Science, volume 555, pages 359–370, Berlin, Germany, 1991. Springer.

116

Bibliography

[21] Martin Fischler and Robert Bolles. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated car-
tography. Communications of the ACM, 24(6):381–395, 1981.

[22] Nikolai Chernov. Circular and Linear Regression: Fitting Circles and Lines
by Least Squares. 1st edition, 2010.

[23] Steven Tanimoto. Template matching in pyramids. Computer Graphics
and Image Processing, 16(4):356–369, 1981.

[24] G. Borgefors. Hierarchical chamfer matching: a parametric edge matching
algorithm. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 10:849–865, 1988.

[25] W. J. Rucklidge. Locating objects using the hausdorff distance. In ICCV,
pages 457–464, 1995.

[26] Carsten Steger. Occlusion, clutter, and illumination invariant object recog-
nition. In Photogrammetric Computer Vision, 2002.

[27] C. F. Olson and D. P. Huttenlocher. Automatic target recognition by
matching oriented edge pixels. IEEE Trans. Image Processing, 6(1):103–
113, January 1997.

[28] Markus Ulrich and Carsten Steger. Performance comparison of 2D object
recognition techniques. In Photogrammetric Computer Vision, 2002.

117

	Contents
	Introduction
	Image Thresholding
	Introduction
	Global Thresholding
	Threshold Selection
	Dynamic Thresholding

	Blob Analysis
	Introduction
	Region
	Elementary Operators
	Mathematical Morphology
	Topology
	Features
	Examples

	1D Edge Detection
	Introduction
	Profile Extraction
	Step Edges
	Ridges
	Stripes
	Examples

	2D Edge Detection
	Introduction
	Image Gradient
	Canny Edge Detector

	Contour Analysis
	Introduction
	Path
	Segmentation
	Statistical Features
	Geometrical Features

	Shape Fitting
	Introduction
	Lines
	Circles
	Fitting Approximate Primitives to Images
	Examples

	Template Matching
	Introduction
	Brightness-Based Matching
	Edge-Based Matching
	Examples

	Bibliography

